scholarly journals Factors Associated With Lameness in Tie Stall Housed Dairy Cows in South Germany

2020 ◽  
Vol 7 ◽  
Author(s):  
Andreas W. Oehm ◽  
Katharina Charlotte Jensen ◽  
Annegret Tautenhahn ◽  
Kerstin-Elisabeth Mueller ◽  
Melanie Feist ◽  
...  

Lameness remains a major concern for animal welfare and productivity in modern dairy production. Even though a trend toward loose housing systems exists and the public expects livestock to be kept under conditions where freedom of movement and the expression of natural behavior are ensured, restrictive housing systems continue to be the predominant type of housing in some regions. Factors associated with lameness were evaluated by application of multiple logistic regression modeling on data of 1,006 dairy cows from 56 tie stall farms in Bavaria, South Germany. In this population, approximately every fourth cow was lame (24.44% of scored animals). The mean farm level prevalence of lameness was 23.28%. In total, 22 factors were analyzed regarding their association with lameness. A low Body Condition Score (BCS) (OR 1.54 [95%-CI 1.05–2.25]) as well as increasing parity (OR 1.41 [95%-CI 1.29–1.54]) entailed greater odds of lameness. Moreover, higher milk yield (OR 0.98 [95%-CI 0.96–1.00]) and organic farming (OR 0.48 [95%-0.25–0.92]) appeared to be protectively associated with lameness. Cows with hock injuries (OR 2.57 [95%-CI 1.41–4.67]) or with swellings of the ribs (OR 2.55 [95%-CI 1.53–4.23]) had higher odds of lameness. A similar association was observed for the contamination of the lower legs with distinct plaques of manure (OR 1.88 [95%-CI 1.14–3.10]). As a central aspect of tie stall housing, the length of the stalls was associated with lameness; with stalls of medium [(>158–171 cm) (OR 2.15 [95%-CI 1.29–3.58]) and short (≤158 cm) length (OR 4.07 [95%-CI 2.35–7.05]) increasing the odds compared with long stalls (>171 cm). These results can help both gaining knowledge on relevant factors associated with lameness as well as approaching the problem of dairy cow lameness in tie stall operations.

2019 ◽  
Vol 102 (1) ◽  
pp. 706-714 ◽  
Author(s):  
B.J. Heins ◽  
L.S. Sjostrom ◽  
M.I. Endres ◽  
M. Renato Carillo ◽  
R. King ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Andreas W. Oehm ◽  
Gabriela Knubben-Schweizer ◽  
Anna Rieger ◽  
Alexander Stoll ◽  
Sonja Hartnack

Abstract Background Lameness in dairy cows has been an ongoing concern of great relevance to animal welfare and productivity in modern dairy production. Many studies have examined associations between various factors related to housing, management, and the individual animal and the occurrence of lameness. The objective of this systematic review was to answer the research question “what are risk factors associated with lameness in dairy cows that are housed in free stall barns or tie stall facilities”. Furthermore, we performed a synthesis of current evidence on certain risk factors by means of a meta-analysis to illustrate the strength of their association with bovine lameness. Results Following pre-defined procedures and inclusion criteria in accordance with the PRISMA statement, two observers independently included 53 articles out of a pool of 1941 articles which had been retrieved by a broad literature research in a first step. 128 factors that have been associated with lameness were identified in those papers. Meta-analyses were conducted for five factors presented in six different studies: Body condition score, presence of claw overgrowth, days in milk, herd size, and parity. Results indicated that a body condition score of ≤2.5/5 is associated with increased odds of lameness. A higher risk of being lame was found for the presence of claw overgrowth, the first 120 days in milk, larger herd sizes, and increasing parity. Throughout the study, we encountered profound difficulties in retrieving data and information of sufficient quality from primary articles as well as in recovering comparable studies. Conclusions We learned that an abundance of literature on bovine lameness exists. To adequately address a problem of this importance to both animal welfare and economic viability, solid evidence is required in the future to develop effective intervention strategies. Therefore, a consistent working definition of lameness and specific risk factors should be an option to consider.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hassan Sadri ◽  
Morteza Hosseini Ghaffari ◽  
Katharina Schuh ◽  
Christian Koch ◽  
Helga Sauerwein

AbstractOver-conditioned dairy cows, classified by body condition score (BCS) and backfat thickness (BFT) are less able to metabolically adapt to the rapidly increasing milk yield after parturition. Based on serum metabolome and cluster analyses, high BCS cows (HBCS) could be classified into metabotypes that are more similar to normal (NBCS) cows, i.e., HBCS predicted normal (HBCS-PN) than the HBCS predicted high (HBCS-PH) cows—similar to the concept of obese but metabolically healthy humans. Our objective was to compare muscle metabolome and mRNA abundance of genes related to lipogenesis and lipolysis in adipose tissue between HBCS-PH (n = 13), HBCS-PN (n = 6), and NBCS-PN (n = 15). Tail-head subcutaneous fat was biopsied on d −49, 3, 21, and 84 relative to parturition. Potential differences in the oxidative capacity of skeletal muscle were assessed by targeted metabolomics in M. semitendinosus from d 21. Besides characteristic changes with time, differences in the mRNA abundance were limited to lipogenesis-related genes on d −49 (HBCS-PH > HBCS-PN). The HBCS-PH had more than two-fold higher muscle concentrations of short (C2, C4-OH, C6-OH) and long-chain acylcarnitines (C16, C18, and C18:1) than HBCS-PN, indicating a greater oxidative capacity for fatty acids (and utilization of ketones) in muscle of HBCS-PN than HBCS-PH cows.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


Sign in / Sign up

Export Citation Format

Share Document