scholarly journals A New Cascade-Correlation Growing Deep Learning Neural Network Algorithm

Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 158
Author(s):  
Soha Abd El-Moamen Mohamed ◽  
Marghany Hassan Mohamed ◽  
Mohammed F. Farghally

In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural networks as a new architecture and supervised learning algorithm. This process optimizes the architectures of the network which intends to accelerate the learning process and produce better performance in generalization. Many researchers have to date proposed several growing algorithms to optimize the feedforward neural network architectures. The proposed algorithm has been tested on various medical data sets. The results prove that the proposed algorithm is a better method to evaluate the accuracy and flexibility resulting from it.


Author(s):  
MICHAEL J. WATTS

A method for extracting Zadeh–Mamdani fuzzy rules from a minimalist constructive neural network model is described. The network contains no embedded fuzzy logic elements. The rule extraction algorithm needs no modification of the neural network architecture. No modification of the network learning algorithm is required, nor is it necessary to retain any training examples. The algorithm is illustrated on two well known benchmark data sets and compared with a relevant existing rule extraction algorithm.



Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
David Černý ◽  
Josef Dobeš

In this paper, a special method based on the neural network is presented, which is conveniently used to precompute the steps of numerical integration. This method approximates the behaviour of the numerical integrator with respect to the local truncation error. In other words, it allows the precomputation of the individual steps in such a way that they do not need to be estimated by an algorithm but can be directly estimated by a neural network. Experimental tests were performed on a series of electrical circuits with different component parameters. The method was tested for two integration methods implemented in the simulation program SPICE (Trapez and Gear). For each type of circuit, a custom network was trained. Experimental simulations showed that for well-defined problems with a sufficiently trained network, the method allows in most cases reducing the total number of iteration steps performed by the algorithm during the simulation computation. Applications of this method, drawbacks, and possible further optimizations are also discussed.



2013 ◽  
Vol 6 (9) ◽  
pp. 2301-2309 ◽  
Author(s):  
G. Saponaro ◽  
P. Kolmonen ◽  
J. Karhunen ◽  
J. Tamminen ◽  
G. de Leeuw

Abstract. The discrimination of cloudy from cloud-free pixels is required in almost any estimate of a parameter retrieved from satellite data in the ultraviolet (UV), visible (VIS) or infrared (IR) parts of the electromagnetic spectrum. In this paper we report on the development of a neural network (NN) algorithm to estimate cloud fractions using radiances measured at the top of the atmosphere with the NASA-Aura Ozone Monitoring Instrument (OMI). We present and discuss the results obtained from the application of two different types of neural networks, i.e., extreme learning machine (ELM) and back propagation (BP). The NNs were trained with an OMI data sets existing of six orbits, tested with three other orbits and validated with another two orbits. The results were evaluated by comparison with cloud fractions available from the MODerate Resolution Imaging Spectrometer (MODIS) flying on Aqua in the same constellation as OMI, i.e., with minimal time difference between the OMI and MODIS observations. The results from the ELM and BP NNs are compared. They both deliver cloud fraction estimates in a fast and automated way, and they both performs generally well in the validation. However, over highly reflective surfaces, such as desert, or in the presence of dust layers in the atmosphere, the cloud fractions are not well predicted by the neural network. Over ocean the two NNs work equally well, but over land ELM performs better.



2007 ◽  
Vol 51 (04) ◽  
pp. 297-312
Author(s):  
Eric Besnard ◽  
Adeline Schmitz ◽  
Hamid Hefazi ◽  
Rahul Shinde

This paper presents a neural network-based response surface method for reducing the cost of computer-intensive optimizations for applications in ship design. In the approach, complex or costly analyses are replaced by a neural network, which is used to instantaneously estimate the value of the function(s) of interest. The cost of the optimization is shifted to the generation of (smaller) data sets used for training the network. The focus of the paper is on the use and analysis of constructive networks, as opposed to networks of fixed size, for treating problems with a large number of variables, say around 30. The advantages offered by constructive networks are emphasized, leading to the selection and discussion of the cascade correlation algorithm. This topology allows for efficient neural network determination when dealing with function representation over large design spaces without requiring prior experience from the user. During training, the network grows until the error on a small set (validation set), different from that used in the training itself (training set), starts increasing. The method is validated for a mathematical function for dimensions ranging from 5 to 30, and the importance of analyzing the error on a set other than the training set is emphasized. The approach is then applied to the automated computational fluid dynamics-based shape optimization of a fast ship configuration known as the twin H-body. The classical approach yields a design improvement of 26%, whereas the neural network-based method allows reaching a 34% improvement at one fifth of the cost of the former. Based on the analysis of the results, areas for future improvements and research are outlined. The results demonstrate the potential of the method in saving valuable development cycle time and increasing the performance of future ship designs.



2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.



2021 ◽  
pp. 1-10
Author(s):  
Lipeng Si ◽  
Baolong Liu ◽  
Yanfang Fu

The important strategic position of military UAVs and the wide application of civil UAVs in many fields, they all mark the arrival of the era of unmanned aerial vehicles. At present, in the field of image research, recognition and real-time tracking of specific objects in images has been a technology that many scholars continue to study in depth and need to be further tackled. Image recognition and real-time tracking technology has been widely used in UAV aerial photography. Through the analysis of convolution neural network algorithm and the comparison of image recognition technology, the convolution neural network algorithm is improved to improve the image recognition effect. In this paper, a target detection technique based on improved Faster R-CNN is proposed. The algorithm model is implemented and the classification accuracy is improved through Faster R-CNN network optimization. Aiming at the problem of small target error detection and scale difference in aerial data sets, this paper designs the network structure of RPN and the optimization scheme of related algorithms. The structure of Faster R-CNN is adjusted by improving the embedding of CNN and OHEM algorithm, the accuracy of small target and multitarget detection is improved as a whole. The experimental results show that: compared with LENET-5, the recognition accuracy of the proposed algorithm is significantly improved. And with the increase of the number of samples, the accuracy of this algorithm is 98.9%.



Author(s):  
Baiyu Peng ◽  
Qi Sun ◽  
Shengbo Eben Li ◽  
Dongsuk Kum ◽  
Yuming Yin ◽  
...  

AbstractRecent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task. Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://youtu.be/76ciJmIHMD8 or https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html.



Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.



2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.



Sign in / Sign up

Export Citation Format

Share Document