scholarly journals Investigations on Low Frequency Noises of On-Shore Wind Turbines

Acoustics ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 343-367
Author(s):  
Esther Blumendeller ◽  
Ivo Kimmig ◽  
Gerhard Huber ◽  
Philipp Rettler ◽  
Po Wen Cheng

The expansion of renewable energy usage is one of the major social tasks in Europe and therefore requires acceptance and support from the population. In the case of onshore wind turbines, the complaints of local residents are often interpreted as infrasound disturbances conceivably caused by wind turbine operation. To improve the acceptance for wind energy projects, national standards and regulations need to incorporate such low frequency effects. This contribution presents long-term acoustic measurement data of low frequency noise recorded directly near wind turbines (emission) and inside of residential buildings (immission) with the objectives to identify the signal characteristics and main influential parameters. Different locations (wind farm and individual turbine), wind conditions, and time ranges are evaluated. It is shown that various frequency content below 150 Hz (harmonics of blade passing frequency, etc.) is connected to the rotation of the rotor blade and the operation of the generator. Furthermore, stable atmospheric conditions are determined to be of high importance for the transmission of the characteristic signals. For future research, this work also serves as an example for low frequency sound pressure data during operation and shutdown of wind turbines.

2020 ◽  
Author(s):  
Sonja Krüger ◽  
Gerald Steinfeld ◽  
Martin Kraft ◽  
Laura J. Lukassen

Abstract. The optimisation of the power output of wind turbines requires the consideration of various aspects including turbine design, wind farm layout and more. An improved understanding of the interaction of wind turbines with the atmospheric boundary layer is an essential prerequisite for such optimisations. Using numerical simulations, a variety of different situations and turbine designs can be compared and evaluated. For such a detailed analysis, the output of an extensive number of turbine and flow parameters is of great importance. Usually simulations are either specified to the output of turbine parameters or the detailed simulation of the flow. In this paper a coupling of the aeroelastic code FAST and the Large-Eddy Simulation tool PALM is presented. The advantage of the coupling of these models is that it enables the analysis of the turbine behaviour, i.a. turbine power, blade and tower loads, under different atmospheric conditions. The proposed coupling is tested with the generic NREL 5 MW turbine and the operational eno114 3.5 MW turbine. Simulating the NREL 5 MW turbine allows for a first evaluation of our PALM-FAST-coupling approach based on characteristics of the NREL turbine reported in the literature. The comparisons of the simulations to the NREL literature values show very promising results. Furthermore, a validation with free-field measurement data for the eno114 3.5 MW turbine for a site in Northern Germany is performed. The results show a good agreement with the free field measurement data. Additionally, our coupling offers an enormous reduction of the computing time, in comparison to similar methods with the same detail, and at the same time an extensive output of the turbine data.


2003 ◽  
Vol 125 (4) ◽  
pp. 497-505 ◽  
Author(s):  
G. M. McNerney ◽  
C. P. van Dam ◽  
D. T. Yen-Nakafuji

The interaction between the rotor and the tower wake is an important source of noise for wind turbines with downwind rotors. The tower wake modifies the dynamic pressure and the local flow incidence angle as seen by the blades and, hence, modifies the aerodynamic loading of the blade during blade passage. The resulting n per revolution fluctuation in the blade loading (where n is the number of blades) is the source of low frequency but potentially high amplitude sound levels. The Wind Turbine Company (WTC) Proof of Concept 250 kW (POC) wind turbine has been observed by field personnel to produce low-frequency emissions at the National Wind Technology Center (NWTC) site during specific atmospheric conditions. Consequently, WTC is conducting a three-phase program to characterize the low frequency emissions of its two-bladed wind turbines and to develop noise mitigation techniques if needed. This paper summarizes the first phase of this program including recent low-frequency noise measurements conducted on the WTC POC250 kW wind turbine, a review of the wake characteristics of circular towers as they pertain to the blade-wake interaction problem, and techniques to attenuate the sound pressure levels caused by the blade-wake interaction.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Martino Marini ◽  
Roberto Baccoli ◽  
Costantino C. Mastino ◽  
Antonino Di Bella ◽  
Carlo Bernardini ◽  
...  

The noise production from wind turbines (WT) and its propagation into the surrounding environment have an impact on the receptors (RC) that have to be accurately predicted within the environmental impact assessment. The low-frequency noise (LFN) is of special concern for it is typical of wind systems and it involves specific computational issues. The purpose of this study is to apply and compare the assessment procedures currently used in different European countries for the prediction of LFN produced by wind turbines, with reference to a specific case. The results of the calculations for a planned wind farm in northern Sardinia, Italy, obtained by the available computational tools and with the help of the presented predictive models are presented and discussed. It can be deduced from this that the impact due to the low frequencies noise generated by wind turbines in the vicinity of sensitive receptors is negligible in terms of generated sound pressure levels (SPLs), even though further investigations on such a topic are needed.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Payam Teimourzadeh Baboli ◽  
Davood Babazadeh ◽  
Amin Raeiszadeh ◽  
Susanne Horodyvskyy ◽  
Isabel Koprek

With the increasing demand for the efficiency of wind energy projects due to challenging market conditions, the challenges related to maintenance planning are increasing. In this paper, a condition-based monitoring system for wind turbines (WTs) based on data-driven modeling is proposed. First, the normal condition of the WTs key components is estimated using a tailor-made artificial neural network. Then, the deviation of the real-time measurement data from the estimated values is calculated, indicating abnormal conditions. One of the main contributions of the paper is to propose an optimization problem for calculating the safe band, to maximize the accuracy of abnormal condition identification. During abnormal conditions or hazardous conditions of the WTs, an alarm is triggered and a proposed risk indicator is updated. The effectiveness of the model is demonstrated using real data from an offshore wind farm in Germany. By experimenting with the proposed model on the real-world data, it is shown that the proposed risk indicator is fully consistent with upcoming wind turbine failures.


2011 ◽  
Vol 59 (2) ◽  
pp. 135 ◽  
Author(s):  
Robert D. O’Neal ◽  
Robert D. Hellweg ◽  
Richard M. Lampeter

2021 ◽  
Author(s):  
Rieska Mawarni Putri ◽  
Etienne Cheynet ◽  
Charlotte Obhrai ◽  
Jasna Bogunovic Jakobsen

Abstract. Turbulence spectral characteristics for various atmospheric stratifications are studied using the observations from an offshore mast at Vindeby wind farm. Measurement data at 6 m, 18 m and 45 m above the mean sea level are considered. At the lowest height, the normalized power spectral densities of the velocity components show deviations from Monin-Obukhov similarity theory (MOST). A significant co-coherence at the wave spectral peak frequency between the vertical velocity component and the velocity of the sea surface is observed, but only when the significant wave heights exceed 0.9 m. The turbulence spectra at 18 m generally follow MOST and are consistent with the empirical spectra established on the FINO1 offshore platform from an earlier study. The data at 45 m is associated with a high-frequency measurement noise which limits its analysis to strong wind conditions only. The estimated co-coherence of the along-wind component under near-neutral atmosphere matches remarkably well with those at FINO1. The turbulence characteristics estimated from the present dataset are valuable to better understand the structure of turbulence in the marine atmospheric boundary layer and are relevant for load estimations of offshore wind turbines. Yet, a direct application of the results to other offshore or coastal sites should be exercised with caution, since the dataset is collected in shallow waters and at heights lower than the hub height of the current and the future state-of-the-art offshore wind turbines.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Fukai Li ◽  
Zhiqiang Yang ◽  
Yehuo Fan ◽  
Yuchun Li ◽  
Guang Li

With regards to the electromagnetic measurement while drilling (EM-MWD), the extremely-low frequency electromagnetic wave signal (ELF-EM) below 20 Hz is usually used as the carrier of downhole measurement data due to the transmission characteristics of the electromagnetic wave (EM). However, influenced by the low frequency noise of drilling, the ELF-EM signal will be inevitably interfered by field noise, which ultimately impedes decoding. The Fourier band-pass filter can effectively remove out-of-band noise but is incapable of handling in-band noise. Therefore, based on the traditional method, a hybrid algorithm of adaptive Wiener algorithm and correlation detection (AWCD) is designed, so as to enhance the in-band noise processing capability, and the effectiveness of such algorithm is well verified through coding and decoding simulation as well as experimental data. The proposed algorithm, as indicated by theoretical analysis and test data, can effectively solve actual engineering issues, providing methodological references to engineers and technicians.


2020 ◽  
Vol 48 (2) ◽  
pp. 181-197
Author(s):  
John Laurence Davy ◽  
Kym Burgemeister ◽  
David Hillman ◽  
Simon Carlile

Abstract This manuscript describes a range of technical deliberations undertaken by the authors during their work as members of the Australian Government’s Independent Scientific Committee on Wind Turbines. Central to these deliberations was the requirement upon the committee to improve understanding and monitoring of the potential impacts of sound from wind turbines (including low frequency and infrasound) on health and the environment. The paper examines existing wind turbine sound limits, possible perceptual and physiological effects of wind turbine noise, aspects of the effects of wind turbine sound on sleep health and quality of life, low-frequency noise limits, the concept of annoyance including alternative causes of it and the potential for it to be affected by low-frequency noise, the influence of amplitude modulation and tonality, sound measurement and analysis and management strategies. In so doing it provides an objective basis for harmonisation across Australia of provisions for siting and monitoring of wind turbines, which currently vary from state to state, contributing to contention and potential inequities between Australians, depending on their place of residence.


Sign in / Sign up

Export Citation Format

Share Document