scholarly journals Application of a New Combination Algorithm in ELF-EM Processing

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Fukai Li ◽  
Zhiqiang Yang ◽  
Yehuo Fan ◽  
Yuchun Li ◽  
Guang Li

With regards to the electromagnetic measurement while drilling (EM-MWD), the extremely-low frequency electromagnetic wave signal (ELF-EM) below 20 Hz is usually used as the carrier of downhole measurement data due to the transmission characteristics of the electromagnetic wave (EM). However, influenced by the low frequency noise of drilling, the ELF-EM signal will be inevitably interfered by field noise, which ultimately impedes decoding. The Fourier band-pass filter can effectively remove out-of-band noise but is incapable of handling in-band noise. Therefore, based on the traditional method, a hybrid algorithm of adaptive Wiener algorithm and correlation detection (AWCD) is designed, so as to enhance the in-band noise processing capability, and the effectiveness of such algorithm is well verified through coding and decoding simulation as well as experimental data. The proposed algorithm, as indicated by theoretical analysis and test data, can effectively solve actual engineering issues, providing methodological references to engineers and technicians.

1994 ◽  
Vol 10 (4) ◽  
pp. 374-381 ◽  
Author(s):  
Stephen D. Murphy ◽  
D. Gordon E. Robertson

To remove low-frequency noise from data such as DC-bias from electromyo-grams (EMGs) or drift from force transducers, a high-pass filter was constructed from a low-pass filter of known characteristics. A summary of the necessary steps required to transform the low-pass digital were developed. Contaminated EMG and force platform data were used to test the filter. The high-pass filter successfully removed the low-frequency noise from the EMG signals. The high-pass filter was then cascaded with the low-pass filter to produce a band-pass filter to enable simultaneous high- and low-frequency noise reduction.


2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


Geophysics ◽  
1983 ◽  
Vol 48 (9) ◽  
pp. 1219-1232 ◽  
Author(s):  
William A. San Filipo ◽  
Gerald W. Hohmann

Computer simulation of low‐frequency electromagnetic (EM) digital data acquisition in the presence of natural field noise demonstrates several important limitations and considerations. Without a remote reference noise removal scheme, it is difficult to obtain an adequate ratio of signal to noise below 0.1 Hz for frequency‐domain processing and below 0.3 Hz base frequency for time‐domain processing for a typical source‐receiver configuration. A digital high‐pass filter substantially facilitates rejection of natural field noise above these frequencies; however, at lower frequencies where much longer stacking times are required, it becomes ineffective. Use of a remote reference to subtract natural field noise extends these low‐frequency limits by one decade, but the remote reference technique is limited by the resolution and dynamic range of the instrumentation. Gathering data in short segments so that natural field drift can be offset for each segment allows a higher gain setting to minimize dynamic range problems. The analysis is also applicable to the induced polarization technique in which similar problems arise at low frequencies in the presence of telluric noise.


Author(s):  
P. Vogel ◽  
J. Bin ◽  
N. Sinha

An end-to-end LES/FW-H noise prediction model has been demonstrated and validated with acoustic and flowfield data from a dual stream nozzle with pylon experiment conducted at NASA GRC using their Jet Engine Simulator (JES) geometry. Results show a large region of high turbulent kinetic energy (TKE) in the wake of the pylon. Acoustic Source Localization (ASL) studies using our numerical phased array methodology show this wake region to be the principle location of low frequency noise sources while higher frequency sources occur nearer to the nozzle lips. Numerical simulations have also been conducted on Jet-Surface Interaction (JSI) effects of a supersonic jet exhausting parallel to a finite surface. Time-averaged LES data and far-field noise predictions have been obtained for multiple surface locations as well as for an isolated jet nozzle. For upstream observers located below the surface, results show an increase in low-frequency noise over what was predicted for the isolated nozzle due to JSI effects and decrease in high-frequency noise due to shielding. This was significantly more pronounced for an over-expanded jet than for an under-expanded jet, an effect that was primarily attributed to the shorter core length of the over-expanded jet.


Acoustics ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 343-367
Author(s):  
Esther Blumendeller ◽  
Ivo Kimmig ◽  
Gerhard Huber ◽  
Philipp Rettler ◽  
Po Wen Cheng

The expansion of renewable energy usage is one of the major social tasks in Europe and therefore requires acceptance and support from the population. In the case of onshore wind turbines, the complaints of local residents are often interpreted as infrasound disturbances conceivably caused by wind turbine operation. To improve the acceptance for wind energy projects, national standards and regulations need to incorporate such low frequency effects. This contribution presents long-term acoustic measurement data of low frequency noise recorded directly near wind turbines (emission) and inside of residential buildings (immission) with the objectives to identify the signal characteristics and main influential parameters. Different locations (wind farm and individual turbine), wind conditions, and time ranges are evaluated. It is shown that various frequency content below 150 Hz (harmonics of blade passing frequency, etc.) is connected to the rotation of the rotor blade and the operation of the generator. Furthermore, stable atmospheric conditions are determined to be of high importance for the transmission of the characteristic signals. For future research, this work also serves as an example for low frequency sound pressure data during operation and shutdown of wind turbines.


2021 ◽  
Vol 13 (4) ◽  
pp. 779
Author(s):  
Haoqiu Zhou ◽  
Xuan Feng ◽  
Zejun Dong ◽  
Cai Liu ◽  
Wenjing Liang

As one of the main payloads mounted on the Yutu-2 rover of Chang’E-4 probe, lunar penetrating radar (LPR) aims to map the subsurface structure in the Von Kármán crater. The field LPR data are generally masked by clutters and noises of large quantities. To solve the noise interference, dozens of filtering methods have been applied to LPR data. However, these methods have their limitations, so noise suppression is still a tough issue worth studying. In this article, the denoising convolutional neural network (CNN) framework is applied to the noise suppression and weak signal extraction of 500 MHz LPR data. The results verify that the low-frequency clutters embedded in the LPR data mainly came from the instrument system of the Yutu rover. Besides, compared with the classic band-pass filter and the mean filter, the CNN filter has better performance when dealing with noise interference and weak signal extraction; compared with Kirchhoff migration, it can provide original high-quality radargram with diffraction information. Based on the high-quality radargram provided by the CNN filter, the subsurface sandwich structure is revealed and the weak signals from three sub-layers within the paleo-regolith are extracted.


Sign in / Sign up

Export Citation Format

Share Document