scholarly journals Design and Analysis of a Novel Composited Electromagnetic Linear Actuator

Actuators ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Xinyu Fan ◽  
Jie Yin ◽  
Qinfen Lu

Electromagnetic linear actuators, as key executive components, have a vital impact on the performance of fully flexible variable valve trains. Considering that the conventional moving coil electromagnetic linear actuator (MCELA) has the disadvantages of low force density and a lack of end-passive self-holding ability, a novel composited electromagnetic linear actuator (CELA) is proposed by combining the performance advantages of MCELA and moving iron electromagnetic linear actuator (MIELA) in this work. Firstly, the structure and magnetic circuit design scheme of the proposed actuator are introduced and the finite element simulation model is established. The magnetic field distribution and force characteristics of the actuators are assessed by finite element simulation. Secondly, the construction of the prototype of the actuator is outlined, based on which the feasibility of the design scheme and the steady-state performance of the actuator are verified. Finally, the coordinated control strategy is proposed to realize the multi motion coordination control of the actuator. The research results show that the maximum starting force of the CELA with the end-passive self-holding ability is 574.92 N while the holding force can approach 229.25 N. Moreover, the CELA is proven to have excellent dynamic characteristics and control precision under different motion modes and to have an improved adaptability to the complex working conditions of internal combustion engines.

2011 ◽  
Vol 317-319 ◽  
pp. 3-7
Author(s):  
Yi Fang ◽  
Xiao Peng Li ◽  
Chuan Hui Liu

Giant magnetostrictive actuator is ideal for fast precision Alignment, but the nonlinear strain caused by temperature rise has serious impact on the control precision. This paper verifies the impact of strain caused by temperature rising on the experimental method, based on analyzing the principle of the giant magnetostrictive actuator. The copper consumption in giant magnetostrictive actuator coil , the iron consumption in the magnetostrictive rod and the corresponding method of inhibiting temperature rise were analyzed by theoretical analysis and finite element simulation.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1986 ◽  
Vol 14 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Y. Nakajima ◽  
J. Padovan

Abstract This paper extends the finite element simulation scheme to handle the problem of tires undergoing sliding (skidding) impact into obstructions. Since the inertial characteristics are handled by the algorithm developed, the full range of operating environments can be accommodated. This includes the treatment of impacts with holes and bumps of arbitrary geometry.


Sign in / Sign up

Export Citation Format

Share Document