scholarly journals Sensorless Driving/Braking Control for Electric Vehicles

Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
En-Ping Chen ◽  
Jiangfeng Cheng ◽  
Jia-Hung Tu ◽  
Chun-Liang Lin

A sensorless driving/braking control system for electric vehicles is explained in the present paper. In the proposed system, a field-oriented control (FOC) was used to integrate driving and braking controls in a unified module for reducing the cost of hardware and simultaneously incorporating functional flexibility. An antilock braking system can swiftly halt a vehicle during emergency braking. An electromagnetic reverse braking scheme that provided retarding torque to a running wheel was developed. The scheme could switch the state of the MOSFETs used in the system by alternating the duty cycle of pulse width modulation to adjust the braking current generated by the back electromotive force (EMF) of the motor. In addition, because the braking energy required for the electromagnetic braking scheme is related only to the back EMF, the vehicle operator can control the braking force and safely stop an electric vehicle at high speeds. The proposed integrated sensorless driving and electromagnetic braking system was verified experimentally.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1294
Author(s):  
Xiangdang XUE ◽  
Ka Wai Eric CHENG ◽  
Wing Wa CHAN ◽  
Yat Chi FONG ◽  
Kin Lung Jerry KAN ◽  
...  

An antilock braking system (ABS) is one of the most important components in a road vehicle, which provides active protection during braking, to prevent the wheels from locking-up and achieve handling stability and steerability. The all-electric ABS without any hydraulic components is a potential candidate for electric vehicles. To demonstrate and examine the all-electric ABS algorithms, this article proposes a single-wheel all-electric ABS test bench, which mainly includes the vehicle wheel, the roller, the flywheels, and the electromechanical brake. To simulate dynamic operation of a real vehicle’s wheel, the kinetic energy of the total rotary components in the bench is designed to match the quarter of the one of a commercial car. The vertical force to the wheel is adjustable. The tire-roller contact simulates the real tire-road contact. The roller’s circumferential velocity represents the longitudinal vehicle velocity. The design and analysis of the proposed bench are described in detail. For the developed prototype, the rated clamping force of the electromechanical brake is 11 kN, the maximum vertical force to the wheel reaches 300 kg, and the maximum roller (vehicle) velocity reaches 100 km/h. The measurable bandwidth of the wheel speed is 4 Hz–2 kHz and the motor speed is 2.5 Hz–50 kHz. The measured results including the roller (vehicle) velocity, the wheel velocity, and the wheel slip are satisfactory. This article offers the effective tools to verify all-electric ABS algorithms in a laboratory, hence saving time and cost for the subsequent test on a real road.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 84 ◽  
Author(s):  
Chun-Liang Lin ◽  
Hao-Che Hung ◽  
Jia-Cheng Li

Looking at new trends in global policies, electric vehicles (EVs) are expected to increasingly replace gasoline vehicles in the near future. For current electric vehicles, the motor current driving system and the braking control system are two independent issues with separate design. If a self-induced back-EMF voltage from the motor is a short circuit, then short-circuiting the motor will result in braking. The higher the speed of the motor, the stronger the braking effect. However, the effect is deficient quickly once the motor speed drops quickly. Traditional kinetic brake (i.e., in the short circuit is replaced by a resistor) and dynamic brake (the short circuit brake is replaced by a capacitor) rely on the back EMF alone to generate braking toque. The braking torque generated is usually not enough to effectively stop a rotating motor in a short period of time. In this research task, an integrated driving and braking control system is considered for EVs with an active regenerative braking control system where back electromagnetic field (EMF), controlled by the pulse-width modulation (PWM) technique, is used to charge a pump capacitor. The capacitor is used as an extra energy source cascaded with the battery as a charge pump. This is used to boost braking torque to stop the rotating motor in an efficient way while braking. Experiments are conducted to verify the proposed design. Compared to the traditional kinetic brake and dynamic brake, the proposed active regenerative control system shows better braking performance in terms of stopping time and stopping distance.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1484 ◽  
Author(s):  
Shang-Ming Liu ◽  
Chia-Hung Tu ◽  
Chun-Liang Lin ◽  
Van-Tsai Liu

Most electric vehicles use regenerative brakes, since this kind of braking system design recycles electromotive force to increase electric power endurance during braking. This research proposes a sensor-free, integrated driving and braking control system that uses a space-vector-pulse-width module to synthesize stator current by purpose. It calculates the rotor position angle of the motor by detecting variation in the stator current and completes a closed-loop control. When the motor receives a brake command, the controller changes the inverter-switching sequence to generate reverse torque and a magnetic field to complete the driving or braking function using field-oriented control (FOC). This provides a smoother and more accurate motor control than sinusoidal commands with Hall feedback. Compared to the regenerative brake and rheostatic brake, the proposed braking system has a powerful braking torque and shorter reaction time. Comparisons of reaction times for a modified four-wheel electric vehicle equipped with a permanent magnet synchronous motor under neutral-sliding-status, FOC based braking, and short-circuit braking were conducted.


2015 ◽  
Vol 62 (3) ◽  
pp. 1629-1638 ◽  
Author(s):  
Amir Dadashnialehi ◽  
Alireza Bab-Hadiashar ◽  
Zhenwei Cao ◽  
Ajay Kapoor

2013 ◽  
Vol 694-697 ◽  
pp. 73-76 ◽  
Author(s):  
Cong Wang ◽  
Hong Wei Liu ◽  
Liang Yao ◽  
Yan Bo Wang ◽  
Liang Chu ◽  
...  

A brake pedal stroke simulator is a key component of realizing a Regenerative Braking System. It provides a good pedal feeling to a driver, improves energy recovery and ensures braking security. This paper presents the hardware solution of the braking control system, the structure and key design parameters of a brake pedal stroke simulator. Through simulation, the energy recover rate and brake pedal feeling of drivers can be improved. The simulator can be used to realize the regenerative braking system in hybrid or electric vehicles.


2003 ◽  
Vol 1819 (1) ◽  
pp. 237-243
Author(s):  
Kerry J. McManus ◽  
Aaron S. Blicblau ◽  
Christopher J. Broadhurst ◽  
Ashley M. S. Carter

The antilock braking system (ABS) fitted to modern passenger vehicles is intended to provide reliable and efficient braking under critical road conditions or in emergency situations. Thus, ABS-equipped vehicles should remain steerable and maintain directional stability in the event of emergency braking. The ABS on vehicles operates on the principle of detection of brake lockup and release of the lockup to prevent an uncontrollable skid developing on sealed roads. However, on gravel roads or snow-covered roads braking distances can be reduced if brake lockup occurs and a wedge of gravel or snow is allowed to form in front of the wheels. The intervention of ABS prevents the wedge from forming to any significant degree, thereby extending the braking distance. An investigation was carried out of a method of discriminating between sealed and unsealed road surfaces in which a signal can be developed so that an alternative ABS algorithm can be applied specifically for gravel-covered surfaces. An attempt was made to identify and measure the buildup of gravel in front of the wheel directly, using an infrared distance-measurement sensor. Initial tests have shown that the system can provide a signal to the ABS, which will allow a timely response to enable intervention in the activation of the algorithms in the ABS.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


2018 ◽  
Vol 7 (3) ◽  
pp. 1740 ◽  
Author(s):  
Dankan V. Gowda ◽  
Ramachandra A C ◽  
Thippeswamy M N ◽  
Pandurangappa C ◽  
Ramesh Naidu P

This Paper focus, on the different stages associated with the advancement of Automobile Braking Control system. Different V-Models (SIL, MIL, HIL, and DIL) are contrasted with the proposed V model for Hydraulic antilock braking system. The main objective of this research is to enable various loop simulations used in a variety of automotive industries, in order to analyze the performance of different safety functions. A vehicle model is used to represent a real vehicle in a model-based environment. Vehicle model is a sophisticated component, which makes use of two wheeler dynamics concepts to achieve a real vehicle behavior. In this research, an attempt is made to elaborate the various automotive simulations used starting from model in loop simulation to Driver in loop Simulation approaches followed by a V-diagram approach to develop the product. Here an ABS controller is taken as an example model for simulation. 


Sign in / Sign up

Export Citation Format

Share Document