scholarly journals Flow Visualization around a Flapping-Wing Micro Air Vehicle in Free Flight Using Large-Scale PIV

Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 99 ◽  
Author(s):  
Alejandro del Estal Herrero ◽  
Mustafa Percin ◽  
Matej Karasek ◽  
Bas van Oudheusden

Flow visualizations have been performed on a free flying, flapping-wing micro air vehicle (MAV), using a large-scale particle image velocimetry (PIV) approach. The PIV method involves the use of helium-filled soap bubbles (HFSB) as tracer particles. HFSB scatter light with much higher intensity than regular seeding particles, comparable to that reflected off the flexible flapping wings. This enables flow field visualization to be achieved close to the flapping wings, in contrast to previous PIV experiments with regular seeding. Unlike previous tethered wind tunnel measurements, in which the vehicle is fixed relative to the measurement setup, the MAV is now flown through the measurement area. In this way, the experiment captures the flow field of the MAV in free flight, allowing the true nature of the flow representative of actual flight to be appreciated. Measurements were performed for two different orientations of the light sheet with respect to the flight direction. In the first configuration, the light sheet is parallel to the flight direction, and visualizes a streamwise plane that intersects the MAV wings at a specific spanwise position. In the second configuration, the illumination plane is normal to the flight direction, and visualizes the flow as the MAV passes through the light sheet.

2018 ◽  
Vol 10 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Christophe De Wagter ◽  
Matěj Karásek ◽  
Guido de Croon

We present a novel design of a tailless flapping wing micro air vehicle, which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to a quadrotor. Moreover, two pairs of wings are tilted clockwise and two pairs of wings anti-clockwise. This allows the micro air vehicle to generate a yaw moment. We have constructed the design and performed multiple flight tests with it, both indoors and outdoors. These tests have shown the vehicle to be capable of agile maneuvers and able to cope with wind gusts. The main advantage is that the proposed design is relatively simple to produce, and yet has the capabilities expected of tailless flapping wing micro air vehicles.


2019 ◽  
Vol 61 (1) ◽  
Author(s):  
B. Martínez Gallar ◽  
B. W. van Oudheusden ◽  
A. Sciacchitano ◽  
M. Karásek

Abstract The objective of this experimental investigation is the volumetric visualization of the near wake topology of the vortex structures generated by a flapping-wing micro air vehicle. To achieve the required visualization domain (which in the present experiments amounts to a size of 60,000 cm3), use is made of robotic particle image velocimetry, which implements coaxial illumination and imaging in combination with the use of helium-filled soap bubbles as tracer particles. Particle trajectories are determined via Lagrangian particle tracking and information of different phases throughout the flapping cycle is obtained by means of a phase-averaging procedure applied to the particle tracks. Experiments have been performed at different settings (flow speed, flapping frequency, and body angle) that are representative of actual flight conditions, and the effect of reduced frequency on the wake topology is investigated. Furthermore, experiments have been carried out in both tethered and free-flight conditions, allowing an unprecedented comparison between the aerodynamics of the two conditions. Graphic abstract


2011 ◽  
Vol 110-116 ◽  
pp. 3495-3499
Author(s):  
G.C. Vishnu Kumar ◽  
M. Rahamath Juliyana

This paper the optimum wing planform for flapping motion is investigated by measuring the lift and drag characteristics. A model is designed with a fixed wing and two flapping wings attached to its trailing edge. Using wind tunnel tests are conducted to study the effect of angle of attack (smoke flow visualization technique). The test comprises of measuring the aerodynamic forces with flapping motion and without it for various flapping frequencies and results are presented. It can be possible to produce a micro air vehicle which is capable of stealthy operations for defence requirements by using these experimental data.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Pengcheng CHI ◽  
Weiping ZHANG ◽  
Wenyuan CHEN ◽  
Hongyi LI ◽  
Kun MENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document