scholarly journals Comparative Assessment of Hydroponic Lettuce Production Either under Artificial Lighting, or in a Mediterranean Greenhouse during Wintertime

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 503
Author(s):  
Orfeas Voutsinos ◽  
Maria Mastoraki ◽  
Georgia Ntatsi ◽  
Georgios Liakopoulos ◽  
Dimitrios Savvas

Butterhead lettuce was grown hydroponically in a vertical farm under high (HLI) and low (LLI) light intensity (310, and 188 μmol m−2 s−1, respectively) and compared to hydroponically grown lettuce in a greenhouse (GT) during wintertime in Athens, Greece (144 μmol m−2 s−1). The highest plant biomass was recorded in the HLI treatment, whereas LLI and GT produced similar plant biomass. However, the LLI produced vortex-like plants, which were non-marketable, while the plants in the GT were normal-shaped and saleable. Net photosynthesis was highest in the HLI and higher in the LLI than in the GT, thereby indicating that light intensity was the dominant factor affecting photosynthetic performance. Nevertheless, the unsatisfactory performance of the LLI is ascribed, not only to reduced light intensity, but also to reduced light uniformity as the LED lamps were closer to the plants than in the HLI. Furthermore, the large solar irradiance variability in the GT resulted in substantially higher adaptation to the increased light intensity compared to LLI, as indicated by chlorophyll fluorescence measurements. Light intensity and photoperiod are believed to be the primary reasons for increased nitrate content in the GT than in the vertical farming treatments.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 510f-511 ◽  
Author(s):  
D.C. Ferree ◽  
S.J. McArtney ◽  
D.M. Scurlock

Four French–American hybrid grape cultivars grown in a greenhouse were subjected to 5 days of 80% shade at four different times around bloom. Fruit set of `Seyval' was reduced by shade imposed before, during, or immediately after bloom. `Vidal' and `Chambourcin' were less sensitive, with fruit set reduced only by shade at bloom. Shade had little effect on fruit set of `DeChaunac'. In a second study, `Chambourcin' vines were exposed to ambient, ambient plus supplemental lights, and 30%, 50%, or 80% shade for 5 weeks beginning just prior to bloom. Fruit set was positively related to light intensity. At harvest, soluble solids, pH, and hue angle had a negative linear relationship to light level. Fruit color developed earliest and most rapidly with the reduced light treatments applied at bloom. Cluster weight was positively related to light intensity.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 315
Author(s):  
Noémi Kappel ◽  
Ildikó Fruzsina Boros ◽  
Francia Seconde Ravelombola ◽  
László Sipos

The goal of this research was to investigate the effect of electrical conductivity (EC) levels of the nutrient solution on the fresh weight, chlorophyll, and nitrate content of hydroponic-system-grown lettuce. The selected cultivars are the most representative commercial varieties grown for European markets. Seven cultivars (‘Sintia,’ ‘Limeira,’ ‘Corentine,’ ‘Cencibel,’ ‘Kiber,’ ‘Attiraï,’ and ‘Rouxaï’) of three Lactuca sativa L. types’ (butterhead, loose leaf, and oak leaf) were grown in a phytotron in rockwool, meanwhile the EC level of the nutrient solutions were different: normal (<1.3 dS/m) and high (10 dS/m). The plants in the saline condition had a lower yield but elevated chlorophyll content and nitrate level, although the ‘Limeira’ and ‘Cencibel’ cultivars had reduced nitrate levels. The results and the special characteristic of the lollo-type cultivars showed that the nitrate level could be very different due to salinity (‘Limeira’ had the lowest (684 µg/g fresh weight (FW)) and ‘Cencibel’ had the highest (4396 µg/g FW)). There was a moderately strong negative correlation (−0.542) in the reverse ratio among the chlorophyll and nitrate contents in plants treated with a normal EC value, while this relationship was not shown in the saline condition. Under the saline condition, cultivars acted differently, and all examined cultivars stayed under the permitted total nitrate level (5000 µg/g FW).


In a tank filled with a suspension of indian ink in tap water, a population of Daphnia magna will undergo a complete cycle of vertical migration when an overhead light source is cycli­cally varied in intensity. A ‘dawn rise’ to the surface at low intensity is followed by the descent of the animals to a characteristic maximum depth. The animals rise to the surface again as the light decreases, and finally show a typical midnight sinking. The light intensities at the level of the animals in this experiment are of the same order as those which have been reported in field observations; the time course of the movement also repeats the natural conditions in the field. The process is independent of the duration of the cycle and is related only to the variation in overhead light intensity. At low light intensity the movement of the animal is determined solely by positive photo-kinesis; the dawn rise is a manifestation of this, and is independent of the direction of the light. At high light intensities there is an orientation response which is superimposed upon an alternating positive (photokinetic) phase and a negative phase during which movement is inhibited. The fully oriented animal shows a special type of positive and negative phototaxis, moving towards the light at reduced light intensities and away from it when the light intensity is increased. In this condition it follows a zone of optimum light intensity with some exactness. Experiments show that an animal in this fully oriented condition will respond to the slow changes of intensity characteristic of the diurnal cycle, while being little affected by tran­sient changes of considerable magnitude.


1987 ◽  
Vol 23 (2) ◽  
pp. 193-200 ◽  
Author(s):  
J. M. O. Eze

SummaryThe growth of Amaranthus hybridus under different daylight intensities was assessed in terms of physical, morphological and biochemical parameters. Maximum growth in many respects was achieved at about 70% of full daylight. However, full daylight favoured chlorophyll stability and maximum accumulation of total dry matter, carbohydrate, chlorophyll and ascorbic acid. The leaf area ratio increased uniformly with decrease in light intensity. Ageing was accelerated by full daylight. Reduced light intensity reduced dry matter accumulation in the roots more than in the stems or leaves.


Author(s):  
Jiyu Jia ◽  
Meng Xu ◽  
Shuikuan Bei ◽  
Hongzhi Zhang ◽  
Li Xiao ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 19
Author(s):  
Ni Nyoman Ratini ◽  
I Wayan Supardi ◽  
Yuli Nurfadhillah

A research on the effect of photosynthetic active radiation (PAR) on the growth of green mustard plants has been conducted. The radiation source used is sunlight. Samples have been grouped as a sample which treated by red filter (P1), by orange filter (P2), by purple filter (P3), by green filter (P4), by blue filter (P5) and a sample without filter as a control (P0). Each sample consisted of four plants. The planting was carried out using polybags with compost media. Observations were made from the nursery phase to the slow vegetative phase (day 3rd, when all plants had grown shoots until day 63rd of the harvest). Parameters measured include light intensity, plant height and number of leaves. Measurement is done every three days. Also it measured plant biomass on the last day of observation (63rd day). The results showed that the intensity of each sample had an impact on the harvest. The best growth rate is obtained in P2, both in the nursery phase and fast vegetative phase i.e. 0.119 cm/day and 0.194 cm/day, respectively. While the highest growth rate was obtained in the P3 sample, namely the slow vegetative phase (0.035 cm/day). Overall the best planting results were obtained in P2 samples with plant height of 23.18 cm, number of leaves of 12 strands and plant biomass of 33.56 g.


Author(s):  
Mauro Centritto ◽  
Sebastiano Delfine ◽  
Maria C. Villani ◽  
Annalisa Occhionero ◽  
Francesco Loreto ◽  
...  

2018 ◽  
Vol 15 (2) ◽  
pp. 40-51
Author(s):  
M A Hossain ◽  
M A Hasan ◽  
S Sikder ◽  
A K M M B Chowdhury

An experiment was carried out to evaluate the leaf characteristics and yield performances of mungbean (Vigna radiata L.) under different light levels at the Crop Physiology and Ecology Research Field of Hajee Mohammad Danesh Science and Technology University, Dinajpur during March to June 2016. The experiment was laid out in a split plot design with three replications. Three light levels (L100 - 100 % light intensity, L75- 75 % light intensity and L50- 50% light intensity) were assigned in the main plots and four varieties (BARl Mung-6, BINA Mung-8, BINA Mung-5 and BU Mug-4) were assigned in subplots. Mosquito nets of different pore size were used for maintaining 75 and 50 percent light intensity. Leaf area was increased due to reduced light levels in all mugbean varieties but the increment was significant in BINA Mung-5 and BINA Mung-8 only at 75% light intensity at 40 days after sowing and only in BARI Mung-6 with L50 and BU Mug-4 with L75 and L50at 50 days after sowing. Due to reduced light levels, leaf dry weight was affected more in BINA Mung-5 and BU Mug- 4 than BARI Mung-6 and BINA Mung-8. Leaf thickness was reduced under shade in all the mungbean varieties, except in BU Mug-4 at 75% light intensity, and the reduction in leaf thickness was mainly due to the reduction in thickness of spongy layer. The palisade layer thickness was influenced insignificantly but spongy layer thickness was increased in BINA Mung-5 at 100% light intensity. The grain yields (t ha-1) of BARI Mung-6 and BINA Mung-8 remained stable under partial shade condition but the grain yield of BINA Mung-5 and BU Mug-4 was reduced drastically under partial shade condition. Higher leaf dry weight, number of pods plant-1, seeds pod-1, and heavier grains in BARI Mung-6 and BINA Mung-8 contributed to the higher grain yield plant-1 under partial shade condition than in BINA Mung-5 and BU Mug-4.The Agriculturists 2017; 15(2) 40-51


Sign in / Sign up

Export Citation Format

Share Document