scholarly journals Recent Patterns of Exposure, Sensitivity, and Adaptive Capacity of Selected Crops in Cameroon

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 550
Author(s):  
Terence Epule Epule

In most parts of sub-Saharan Africa, precipitation is impacted by climate change. In some countries like Cameroon, it is still not clear how maize, millet and rice will respond to changes in growing season precipitation. This work examines the exposure, sensitivity, and adaptive capacity of the above crops to droughts at both the national and sub-national scale. Crop yield data were culled from FAOSTAT while growing season precipitation data were culled from the database of UNDP/Oxford University and the climate portal of the World Bank. Adaptive capacity proxies (literacy, and poverty rate) were collected from KNOEMA and the African Development Bank. The analysis was performed using the vulnerability index equation. Nationally, millet has the lowest vulnerability and rice has the highest. At the sub-national scale, northern maize has the highest vulnerability followed by western highland rice. It is observed that when scales change, the crops that are vulnerable also change. However, at both levels vulnerability has an inverse relationship with adaptive capacity.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252335
Author(s):  
Terence Epule Epule ◽  
Abdelghani Chehbouni ◽  
Driss Dhiba ◽  
Daniel Etongo ◽  
Fatima Driouech ◽  
...  

In sub-Saharan Africa growing season precipitation is affected by climate change. Due to this, in Cameroon, it is uncertain how some crops are vulnerable to growing season precipitation. Here, an assessment of the vulnerability of maize, millet, and rice to growing season precipitation is carried out at a national scale and validated at four sub-national scales/sites. The data collected were historical yield, precipitation, and adaptive capacity data for the period 1961–2019 for the national scale analysis and 1991–2016 for the sub-national scale analysis. The crop yield data were collected for maize, millet, and rice from FAOSTAT and the global yield gap atlas to assess the sensitivity both nationally and sub-nationally. Historical data on mean crop growing season and mean annul precipitation were collected from a collaborative database of UNDP/Oxford University and the climate portal of the World Bank to assess the exposure both nationally and sub-nationally. To assess adaptive capacity, literacy, and poverty rate proxies for both the national and regional scales were collected from KNOEMA and the African Development Bank. These data were analyzed using a vulnerability index that is based on sensitivity, exposure, and adaptive capacity. The national scale results show that millet has the lowest vulnerability index while rice has the highest. An inverse relationship between vulnerability and adaptive capacity is observed. Rice has the lowest adaptive capacity and the highest vulnerability index. Sub-nationally, this work has shown that northern maize is the most vulnerable crop followed by western highland rice. This work underscores the fact that at different scales, crops are differentially vulnerable due to variations in precipitation, temperature, soils, access to farm inputs, exposure to crop pest and variations in literacy and poverty rates. Therefore, caution should be taken when transitioning from one scale to another to avoid generalization. Despite these differences, in the sub-national scale, western highland rice is observed as the second most vulnerable crop, an observation similar to the national scale observation.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Terence Epule Epule ◽  
Driss Dhiba ◽  
Daniel Etongo ◽  
Changhui Peng ◽  
Laurent Lepage

AbstractIn sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.


Author(s):  
Abuelgasim I. I. Musa ◽  
Mitsuru Tsubo ◽  
Imad-Eldin A. Ali-Babiker ◽  
Toshichika Iizumi ◽  
Yasunori Kurosaki ◽  
...  

AbstractA negative effect of increasing temperature on wheat production in the coming decades has been projected for Sudan, which is a major wheat producer in Sub-Saharan Africa. Wheat is susceptible to high temperature, so trend analysis of historical yields together with observed temperature is critical for understanding the effect of climate change. The objective of this study was to determine the association between yield of irrigated wheat in hot drylands of Sudan and temperature during the growing season (November–February). Regional-scale yield data in three major wheat-producing areas (Northern State, Gezira State, and Kassala State) in 48 crop seasons (1970/71–2017/18) were used to determine the correlation of yield with maximum (TMAX) and minimum temperatures (TMIN) at representative meteorological stations (Dongola, Wad Medani, and New Halfa, respectively). Frequencies of days with maximum temperature above 35 °C (THD) and minimum temperature above 20 °C (THN) were also used for correlation analysis. In all three areas, regression analysis detected upward trends in the growing-season temperature. The increase in temperature was particularly evident at Dongola, although no such trend has been reported previously. The yields were negatively correlated with the growing-season temperature, particularly THN in Northern State, TMAX in Gezira State, and TMIN in Kassala State. These results confirm that the recent increase in the growing-season temperature might have reduced the yield to some extent in the breadbasket of Sudan.


2021 ◽  
Author(s):  
Elias Symeonakis ◽  
Eva Arnau-Rosalén ◽  
Antony Wandera ◽  
Thomas Higginbottom ◽  
Bradley Cain

<p>Land degradation is one of the main causes of loss of productivity and ecosystem services worldwide. According to the United Nations Convention to Combat Desertification (UNCCD), sub-Saharan Africa is on a path to experiencing some of the strongest increases in pressures on land and land-based resources than any other continent. Assessing the sensitivity of sub-Saharan African countries to land degradation is, therefore, important for identifying areas of concern, setting a baseline for national land degradation neutrality targets, and for the prioritisation of mitigation measures. The widely used MEDALUS-ESA framework is employed here to assess the sensitivity of Kenya to land degradation using the year 2010 as a baseline. We modify the MEDALUS-ESA approach by adding two important variables that are closely linked with observed land degradation in Kenya: soil erosion and livestock density. Altogether, 16 indicators are estimated from existing global-to-national-scale land cover, vegetation (MCD12Q1, MOD44B), soil (ISRIC African SoilGrids), elevation (SRTM), population and livestock density data, divided into 4 main environmental quality indices (vegetation, soil, climate and management). In order to address the dynamic nature of the land degradation process, we incorporate two additional vegetation indicators: the statistically significant (p≤ 0.05) trend over the last three decades in the Normalised Difference Vegetation Index (NDVI) and the Rain Use Efficiency (RUE; estimated using the GIMMS3g dense NDVI dense time-series and precipitation from CHIRPS). Our results show that ~40% of the country is in critical and ~48% in fragile condition, with respect to environmental sensitivity. Our approach is successful in identifying areas of known long-term degradation, for example the rangelands South and East of Nairobi (e.g. Machacos and Kitengela) and the parts of the northern rangelands (e.g. Yamicha and eastern parts of Isiolo District). It is also successful in mapping the areas of least concern, including some of the major protected areas(e.g. Tsavo National Parks, Meru National Park and the Masai Mara National Reserve) and forested areas (Mt Kenya and the Aberdares). Our modification of the MEDALUS-ESA is an important tool that can be employed at the national scale using free and open-access data to assess environmental sensitivity and assist in the UNCCD efforts to successfully define land degradation neutrality targets.</p>


Author(s):  
Olanrewaju Lawal ◽  
Samuel B. Arokoyu

In recent times, disasters and risk management have gained significant attention, especially with increasing awareness of the risks and increasing impact of natural and other hazards especially in the developing world. Vulnerability, the potential for loss of life or property from disaster, has biophysical or social dimensions. Social vulnerability relates to societal attributes which has negative impacts on disaster outcomes. This study sought to develop a spatially explicit index of social vulnerability, thus addressing the dearth of research in this area in sub-Saharan Africa. Nineteen variables were identified covering various aspects. Descriptive analysis of these variables revealed high heterogeneity across the South West region of Nigeria for both the state and the local government areas (LGAs). Feature identification using correlation analysis identified six important variables. Factor analysis identified two dimensions, namely accessibility and socioeconomic conditions, from this subset. A social vulnerability index (SoVI) showed that Ondo and Ekiti have more vulnerable LGAs than other states in the region. About 50% of the LGAs in Osun and Ogun have a relatively low social vulnerability. Distribution of the SoVI shows that there are great differences within states as well as across regions. Scores of population density, disability and poverty have a high margin of error in relation to mean state scores. The study showed that with a geographical information system there are opportunities to model social vulnerability and monitor its evolution and dynamics across the continent.


2019 ◽  
Vol 11 (21) ◽  
pp. 6135 ◽  
Author(s):  
Bahareh Kamali ◽  
Karim C. Abbaspour ◽  
Bernhard Wehrli ◽  
Hong Yang

Drought events have significant impacts on agricultural production in Sub-Saharan Africa (SSA), as agricultural production in most of the countries relies on precipitation. Socio-economic factors have a tremendous influence on whether a farmer or a nation can adapt to these climate stressors. This study aims to examine the extent to which these factors affect maize vulnerability to drought in SSA. To differentiate sensitive regions from resilient ones, we defined a crop drought vulnerability index (CDVI) calculated by comparing recorded yield with expected yield simulated by the Environmental Policy Integrated Climate (EPIC) model during 1990–2012. We then assessed the relationship between CDVI and potential socio-economic variables using regression techniques and identified the influencing variables. The results show that the level of fertilizer use is a highly influential factor on vulnerability. Additionally, countries with higher food production index and better infrastructure are more resilient to drought. The role of the government effectiveness variable was less apparent across the SSA countries due to being generally stationary. Improving adaptations to drought through investing in infrastructure, improving fertilizer distribution, and fostering economic development would contribute to drought resilience.


Author(s):  
Julia Girard ◽  
Philippe Delacote ◽  
Antoine Leblois

Abstract Agriculture in Sub-Saharan Africa is regularly threatened by the occurrence of weather shocks. We wonder whether the way farmers respond to shocks can affect land use and induce deforestation. Reviewing the existing literature, we found that this question has only been marginally studied. Drawing from the adaptation and land-use change literatures, we then expose the mechanisms through which weather shocks can push farmers to induce land-use change, or conversely to foster conservation. As farmers cope with shocks, their responses can cause degradations in ecosystems which could, in the long term, encourage deforestation and land-use change. To prepare for the next growing season, or adapt to climate variability and risk in the longer term, farmers also make structural adjustments in their farm and land-use decisions, which may lead to changes in land holding. They also resort to adaptation strategies that can indirectly affect land-use decisions by affecting households’ resources (labor, income).


2019 ◽  
Vol 3 ◽  
pp. 12 ◽  
Author(s):  
Derek W. Willis ◽  
Nick Hamon

Background: The Sustainable Development Goals include goals to reduce malaria and stunting. Stunting is a result of childhood undernutrition. Our previous studies found that suppressing malaria could reduce poverty rates among agricultural households in Africa. The objective of this paper is to highlight how suppressing malaria could have the further effect of reducing stunting rates among children in agricultural households. Methods: We estimated the burden of stunting among children in agricultural households in malarious regions of sub-Saharan Africa on the basis of our previous research and data from UNICEF. We also used an evaluation of the impact of a nutrition program in Peru to assess the potential for poverty reduction to reduce stunting. Results: We estimated that there are approximately 21.5 million children suffering from stunting in agricultural households in malarious regions of sub-Saharan Africa. Poverty reduction was found to be a necessary condition to reduce stunting via a multisectoral nutrition program in Peru. The potential impact of suppressing malaria on the poverty rate of agricultural households could therefore play an important role in nutrition programs aiming to reduce stunting in Africa. Reducing the number of children with stunting in these households would improve their health and productivity as adults. Conclusion: We have developed the first estimates of the burden of stunting in agricultural households in malarious regions of sub-Saharan Africa. Understanding how suppressing malaria affects stunting in these households could affect funding for anti-malaria programs. Future research should use longitudinal data to examine this impact at a finer spatial scale.


2021 ◽  
Vol 13 (1) ◽  
pp. 10691
Author(s):  
Paul INYANG ◽  
Chikezie O. ENE ◽  
Ankrumah EMMANUEL ◽  
Uchechukwu P. CHUKWUDI ◽  
Ugochukwu N. IKEOGU

Reduced water resources in sub-Saharan Africa will not only pose threat to the livelihood of poor resource farmers, but also food security in the region. Drought tolerant (DT) maize varieties hold promise to reducing poor resourced farmers’ vulnerability and improve food security in sub-Saharan Africa. Ten maize genotypes obtained from the International Institute of Tropical Agriculture (IITA), were evaluated in 2015 and 2016 using a randomized complete block design experiment with three replications to estimate their genetic variability and predict their genetic advances in the derived savannah agro-ecology. Growth, phenological and yield data were collected from 10 middle row plants. Genetic advance, genotypic, phenotypic and environmental coefficients of variations and their variances were estimated. Principal component and hierarchical cluster analyses were also performed. The dendrogram showed that at 80% dissimilarity point, the genotypes were grouped into clusters A, B and C in both years. The first two principal components explained 91.8% and 93.3% of the total variation in 2015 and 2016, respectively. Number of grains cob-1, plant height and number of days to physiological maturity were consistent in explaining the variations observed in the maize population. Heritability estimates in broad sense ranged from 1.35% for number of leaves to 87.43% for grain yield per hectare. The genetic parameters studied showed significant variations among the growth, phenological and yield data collected that warrants selection and maize improvement program using the DT maize inbred lines in derived savannah agro-ecology.


Sign in / Sign up

Export Citation Format

Share Document