scholarly journals Using Channel and Network Layer Pruning Based on Deep Learning for Real-Time Detection of Ginger Images

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1190
Author(s):  
Lifa Fang ◽  
Yanqiang Wu ◽  
Yuhua Li ◽  
Hongen Guo ◽  
Hua Zhang ◽  
...  

Consistent ginger shoot orientation helps to ensure consistent ginger emergence and meet shading requirements. YOLO v3 is used to recognize ginger images in response to the current ginger seeder’s difficulty in meeting the above agronomic problems. However, it is not suitable for direct application on edge computing devices due to its high computational cost. To make the network more compact and to address the problems of low detection accuracy and long inference time, this study proposes an improved YOLO v3 model, in which some redundant channels and network layers are pruned to achieve real-time determination of ginger shoots and seeds. The test results showed that the pruned model reduced its model size by 87.2% and improved the detection speed by 85%. Meanwhile, its mean average precision (mAP) reached 98.0% for ginger shoots and seeds, only 0.1% lower than the model before pruning. Moreover, after deploying the model to the Jetson Nano, the test results showed that its mAP was 97.94%, the recognition accuracy could reach 96.7%, and detection speed could reach 20 frames·s−1. The results showed that the proposed method was feasible for real-time and accurate detection of ginger images, providing a solid foundation for automatic and accurate ginger seeding.

2009 ◽  
Vol 25 (3) ◽  
pp. 122-127 ◽  
Author(s):  
Dirk Ertel ◽  
Tobias Pflederer ◽  
Stephan Achenbach ◽  
Willi A. Kalender

2002 ◽  
Vol 81 (15) ◽  
pp. 2863-2865 ◽  
Author(s):  
S. Martini ◽  
A. A. Quivy ◽  
E. C. F. da Silva ◽  
J. R. Leite

2021 ◽  
pp. 338991
Author(s):  
Haochen Qi ◽  
Xiaofan Huang ◽  
Jayne Wu ◽  
Jian Zhang ◽  
Fei Wang ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1275 ◽  
Author(s):  
Kun Shang ◽  
Siyu Song ◽  
Yaping Cheng ◽  
Lili Guo ◽  
Yuxin Pei ◽  
...  

A novel approach for preparing carbohydrate chips based on polydopamine (PDA) surface to study carbohydrate–lectin interactions by quartz crystal microbalance (QCM) biosensor instrument has been developed. The amino-carbohydrates were immobilized on PDA-coated quartz crystals via Schiff base reaction and/or Michael addition reaction. The resulting carbohydrate-chips were applied to QCM biosensor instrument with flow-through system for real-time detection of lectin–carbohydrate interactions. A series of plant lectins, including wheat germ agglutinin (WGA), concanavalin A (Con A), Ulex europaeus agglutinin I (UEA-I), soybean agglutinin (SBA), and peanut agglutinin (PNA), were evaluated for the binding to different kinds of carbohydrate chips. Clearly, the results show that the predicted lectin selectively binds to the carbohydrates, which demonstrates the applicability of the approach. Furthermore, the kinetics of the interactions between Con A and mannose, WGA and N-Acetylglucosamine were studied, respectively. This study provides an efficient approach to preparing carbohydrate chips based on PDA for the lectin–carbohydrate interactions study.


Sign in / Sign up

Export Citation Format

Share Document