scholarly journals Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1191
Author(s):  
Mohsen Sabzi-Nojadeh ◽  
Gniewko Niedbała ◽  
Mehdi Younessi-Hamzekhanlu ◽  
Saeid Aharizad ◽  
Mohammad Esmaeilpour ◽  
...  

Foeniculum vulgare Mill. (commonly known as fennel) is used in the pharmaceutical, cosmetic, and food industries. Fennel widely used as a digestive, carminative, galactagogue and diuretic and in treating gastrointestinal and respiratory disorders. Improving low heritability traits such as essential oil yield (EOY%) and trans-anethole yield (TAY%) of fennel by direct selection does not result in rapid gains of EOY% and TAY%. Identification of high-heritable traits and using efficient modeling methods can be a beneficial approach to overcome this limitation and help breeders select the most advantageous traits in medicinal plant breeding programs. The present study aims to compare the performance of the artificial neural network (ANN) and multilinear regression (MLR) to predict the EOY% and TAY% of fennel populations. Stepwise regression (SWR) was used to assess the effect of various input variables. Based on SWR, nine traits—number of days to 50% flowering (NDF50%), number of days to maturity (NDM), final plant height (FPH), number of internodes (NI), number of umbels (NU), seed yield per square meter (SY/m2), number of seeds per plant (NS/P), number of seeds per umbel (NS/U) and 1000-seed weight (TSW)—were chosen as input variables. The network with Sigmoid Axon transfer function and two hidden layers was selected as the final ANN model for the prediction of EOY%, and the TanhAxon function with one hidden layer was used for the prediction of TAY%. The results revealed that the ANN method could predict the EOY% and TAY% with more accuracy and efficiency (R2 of EOY% = 0.929, R2 of TAY% = 0.777, RMSE of EOY% = 0.544, RMSE of TAY% = 0.264, MAE of EOY% = 0.385 and MAE of TAY% = 0.352) compared with the MLR model (R2 of EOY% = 0.553, R2 of TAY% = 0.467, RMSE of EOY% = 0.819, RMSE of TAY% = 0.448, MAE of EOY% = 0.624 and MAE of TAY% = 0.452). Based on the sensitivity analysis, SY/m2, NDF50% and NS/P were the most important traits to predict EOY% as well as SY/m2, NS/U and NDM to predict of TAY%. The results demonstrate the potential of ANNs as a promising tool to predict the EOY% and TAY% of fennel, and they can be used in future fennel breeding programs.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Charles Gbenga Williams ◽  
Oluwapelumi O. Ojuri

AbstractAs a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Author(s):  
Yi-Shu Chen ◽  
Dan Chen ◽  
Chao Shen ◽  
Ming Chen ◽  
Chao-Hui Jin ◽  
...  

Abstract Background The artificial neural network (ANN) emerged recently as a potent diagnostic tool, especially for complicated systemic diseases. This study aimed to establish a diagnostic model for the recognition of fatty liver disease (FLD) by virtue of the ANN. Methods A total of 7,396 pairs of gender- and age-matched subjects who underwent health check-ups at the First Affiliated Hospital, College of Medicine, Zhejiang University (Hangzhou, China) were enrolled to establish the ANN model. Indices available in health check-up reports were utilized as potential input variables. The performance of our model was evaluated through a receiver-operating characteristic (ROC) curve analysis. Other outcome measures included diagnostic accuracy, sensitivity, specificity, Cohen’s k coefficient, Brier score, and Hosmer-Lemeshow test. The Fatty Liver Index (FLI) and the Hepatic Steatosis Index (HSI), retrained using our training-group data with its original designated input variables, were used as comparisons in the capability of FLD diagnosis. Results Eight variables (age, gender, body mass index, alanine aminotransferase, aspartate aminotransferase, uric acid, total triglyceride, and fasting plasma glucose) were eventually adopted as input nodes of the ANN model. By applying a cut-off point of 0.51, the area under ROC curves of our ANN model in predicting FLD in the testing group was 0.908 [95% confidence interval (CI), 0.901–0.915]—significantly higher (P < 0.05) than that of the FLI model (0.881, 95% CI, 0.872–0.891) and that of the HSI model (0.885; 95% CI, 0.877–0.893). Our ANN model exhibited higher diagnostic accuracy, better concordance with ultrasonography results, and superior capability of calibration than the FLI model and the HSI model. Conclusions Our ANN system showed good capability in the diagnosis of FLD. It is anticipated that our ANN model will be of both clinical and epidemiological use in the future.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2020 ◽  
Author(s):  
Jibril Abdulsalam ◽  
Abiodun Ismail Lawal ◽  
Ramadimetja Lizah Setsepu ◽  
Moshood Onifade ◽  
Samson Bada

Abstract Globally, the provision of energy is becoming an absolute necessity. Biomass resources are abundant and have been described as a potential alternative source of energy. However, it is important to assess the fuel characteristics of the various available biomass sources. Soft computing techniques are presented in this study to predict the mass yield (MY), energy yield (EY), and higher heating value (HHV) of hydrothermally carbonized biomass by using Gene Expression Programming (GEP), multiple-input single output-artificial neural network (MISO-ANN), and Multilinear regression (MLR). The three techniques were compared using statistical performance metrics. The coefficient of determination (R2), mean absolute error (MAE), and mean bias error (MBE) were used to evaluate the performance of the models. The MISO-ANN with 5-10-10-1 and 5-15-15-1 network architectures provided the most satisfactory performance of the three proposed models (R2 = 0.976, 0.955, 0.996; MAE = 2.24, 2.11, 0.93; MBE = 0.16, 0.37, 0.12) for MY, EY and HHV respectively. The GEP technique’s ability to predict hydrochar properties based on the input parameters was found to be satisfactory, while MLR provided an unsatisfactory predictive model. Sensitivity analysis was conducted, and the analysis revealed that volatile matter (VM) and temperature (Temp) have more influence on the MY, EY, and HHV.


2021 ◽  
pp. 1-47
Author(s):  
Umang H. Rathod ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract This paper addresses the application of artificial neural network (ANN) and genetic expression programming (GEP), the popular artificial intelligence and machine learning methods, in order to estimate the Savonius wind rotor's performance based on different independent design variables. Savonius wind rotor is one of the competent members of the vertical axis wind turbines (VAWTs) due to its advantageous qualities such as direction independency, design simplicity, ability to perform at low wind speeds, potent standalone system. The available experimental data on Savonius wind rotor have been used to train the ANN and GEP using MATLAB R2020b and GeneXProTools 5.0 software, respectively. The input variables used in ANN and GEP architecture include newly proposed design shape factors, number of blades and stages, gap and overlap lengths, height and diameter of the rotor, free stream velocity, end plate diameter and tip speed ratio, besides cross-sectional area of wind tunnel test section. Based on this, the unknown governing function constituted by the aforementioned input variables is established using ANN and GEP to approximate/forecast the rotor performance as an output. The governing equation formulated by ANN is in the form of weights and biases, while GEP provides it in the form of traditional mathematical functions. The trained ANN and GEP are capable to estimate the rotor performance with R2 ≈ 0.97 and R2 ≈ 0.65, respectively, in correlation with the reported experimental rotor performance.


Author(s):  
Jianhua Yang ◽  
Evor L. Hines ◽  
Ian Guymer ◽  
Daciana D. Iliescu ◽  
Mark S. Leeson ◽  
...  

In this chapter a novel method, the Genetic Neural Mathematical Method (GNMM), for the prediction of longitudinal dispersion coefficient is presented. This hybrid method utilizes Genetic Algorithms (GAs) to identify variables that are being input into a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN), which simplifies the neural network structure and makes the training process more efficient. Once input variables are determined, GNMM processes the data using an MLP with the back-propagation algorithm. The MLP is presented with a series of training examples and the internal weights are adjusted in an attempt to model the input/output relationship. GNMM is able to extract regression rules from the trained neural network. The effectiveness of GNMM is demonstrated by means of case study data, which has previously been explored by other authors using various methods. By comparing the results generated by GNMM to those presented in the literature, the effectiveness of this methodology is demonstrated.


Author(s):  
Aksel Seitllari ◽  
M. Emin Kutay

In this study, soft computing and multilinear regression techniques were employed to develop models for prediction of progression of chip seal percent embedment depth ( Pe). The model uses inputs such as cumulative equivalent traffic volume, Vialit test results, dust content of aggregates, and initial embedment depth. Multilinear regression, adaptive neuro-fuzzy system, and artificial neural network techniques were used to estimate the Pe. The contribution of the variables affecting Pe was evaluated through a sensitivity analysis. The results indicate that while most of the proposed models were able to predict the Pe reasonably, the artificial neural network model performed the best.


Transport ◽  
2013 ◽  
Vol 30 (4) ◽  
pp. 397-405 ◽  
Author(s):  
Kranti Kumar ◽  
Manoranjan Parida ◽  
Vinod Kumar Katiyar

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea to avoid traffic instabilities and to homogenize traffic flow in such a way that risk of accidents is minimized and traffic flow is maximized. There is a need to predict traffic flow data for advanced traffic management and traffic information systems, which aim to influence traveller behaviour, reducing traffic congestion and improving mobility. This study applies Artificial Neural Network for short term prediction of traffic volume using past traffic data. Besides traffic volume, speed and density, the model incorporates both time and the day of the week as input variables. Model has been validated using actual rural highway traffic flow data collected through field studies. Artificial Neural Network has produced good results in this study even though speeds of each category of vehicles were considered separately as input variables.


Sign in / Sign up

Export Citation Format

Share Document