scholarly journals Impacts of Irrigation Termination Date on Cotton Yield and Irrigation Requirement

Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 39 ◽  
Author(s):  
Blessing Masasi ◽  
Saleh Taghvaeian ◽  
Randy Boman ◽  
Sumon Datta

Optimization of cotton irrigation termination (IT) can lead to more efficient utilization and conservation of limited water resources in many cotton production areas across the U.S. This study evaluated the effects of three IT timings on yield, fiber quality, and irrigation requirements of irrigated cotton in southwest Oklahoma during three growing seasons. The results showed cotton yield increased with later IT dates, but this response was highly dependent on the amount and timing of late-season precipitation events. Only a few fiber quality parameters were significantly different among treatments, suggesting a more limited impact of IT on fiber quality. When averaged over the three study years, the lint yield was significantly different amongst all treatments, with an average increase of 347 kg ha−1 from the earliest to the latest IT. Additionally, the seed yield and the micronaire were similar for the two earlier IT treatments and significantly smaller than the values under the latest IT treatment. The differences in fiber uniformity and strength were also significant amongst IT treatments. Strong positive relationships were found between yield components and average late-season water content in the root zone. Lint and seed yields plateaued at an average late-season soil matric potential of about −30 kPa and had a quadratic decline as soil moisture depleted. When benchmarked against the latest IT treatment, the earlier IT treatments achieved average reductions of 16–28% in irrigation requirement. However, this water conservation was accompanied with considerable declines in yield components and micronaire and smaller declines in fiber length, uniformity, and strength.

Author(s):  
Rashid Iqbal ◽  
Muhammad Habib-ur-Rahman ◽  
Muhammad Aown Sammar Raza ◽  
Muhammad Waqas ◽  
Rao Muhammad Ikram ◽  
...  

AbstractWater scarcity constrains global cotton production. However, partial root-zone drying (PRD) and mulching can be used as good techniques to save water and enhance crop production, especially in arid regions. This study aimed to evaluate the effects of mulching for water conservation in an arid environment under PRD and to further assess the osmotic adjustment and enzymatic activities for sustainable cotton production. The study was carried out for 2 years in field conditions using mulches (NM = no mulch, BPM = black plastic mulch at 32 kg ha-1, WSM = wheat straw mulch at 3 tons ha-1, CSM = cotton sticks mulch at 10 tons ha-1) and two irrigation levels (FI = full irrigation and PRD (50% less water than FI). High seed cotton yield (SCY) achieved in FI+WSM (4457 and 4248 kg ha-1 in 2017 and 2018, respectively) and even in PRD+WSM followed by BPM>CSM>NM under FI and PRD for both years. The higher SCY and traits observed in FI+WSM and PRD+WSM compared with the others were attributed to the improved water use efficiency and gaseous exchange traits, increased hormone production (ABA), osmolyte accumulation, and enhanced antioxidants to scavenge the excess reactive oxygen. Furthermore, better cotton quality traits were also observed under WSM either with FI or PRD irrigation regimes. Mulches applications found effective to control the weeds in the order as BPM>WSM>CSM. In general, PRD can be used as an effective stratagem to save moisture along with WSM, which ultimately can improve cotton yield in the water-scarce regions under arid climatic regions. It may prove as a good adaptation strategy under current and future water shortage scenarios of climate change.


2019 ◽  
Vol 1 (1) ◽  
pp. 09-13
Author(s):  
Hakoomat Ali ◽  
Asad Abbas ◽  
Shabir Hussain ◽  
Shoukat Ali Abid ◽  
Shazia Khaliq ◽  
...  

Cotton is an important cash crop and source of foreign exchange. Nitrogen is a critical nutrient for plant growth throughout the life span of the crop. Wheat straw mulch not only source of nitrogen supply but also improves soil fertility and reduces soil erosion. The current study was performed to investigate the effects of mulches and nitrogen application on cotton productivity and fiber quality at the Central Cotton Research Institute (CCRI), Multan. Two crop residues i.e. wheat straw and non wheat straw were used in main plots while nitrogen levels viz. 0,50, 100 and 150 kg ha-1 were randomized in subplots. The highest seed cotton yield (22.99 t ha-1) was obtained by the combination of nitrogen fertilizer application highest level (150 kg N ha-1) along with the wheat straw (20.27 t ha-1). The fiber quality was also affected by the wheat straw along with nitrogen application 150 kg N ha-1 and gave maximum results. In conclusion, wheat straw along with 150 kg ha-1 of Nitrogen application gave maximum results on cotton production as compared to non straw with low nitrogen application.


2022 ◽  
Vol 275 ◽  
pp. 108325
Author(s):  
Huijie Li ◽  
Jiawei Wang ◽  
Xiaolin Huang ◽  
Zhiguo Zhou ◽  
Shanshan Wang ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 10070
Author(s):  
Komlan Koudahe ◽  
Aleksey Y. Sheshukov ◽  
Jonathan Aguilar ◽  
Koffi Djaman

A decrease in water resources, as well as changing environmental conditions, calls for efficient irrigation-water management in cotton-production systems. Cotton (Gossypium sp.) is an important cash crop in many countries, and it is used more than any other fiber in the world. With water shortages occurring more frequently nowadays, researchers have developed many approaches for irrigation-water management to optimize yield and water-use efficiency. This review covers different irrigation methods and their effects on cotton yield. The review first considers the cotton crop coefficient (Kc) and shows that the FAO-56 values are not appropriate for all regions, hence local Kc values need to be determined. Second, cotton water use and evapotranspiration are reviewed. Cotton is sensitive to limited water, especially during the flowering stage, and irrigation scheduling should match the crop evapotranspiration. Water use depends upon location, climatic conditions, and irrigation methods and regimes. Third, cotton water-use efficiency is reviewed, and it varies widely depending upon location, irrigation method, and cotton variety. Fourth, the effect of different irrigation methods on cotton yield and yield components is reviewed. Although yields and physiological measurements, such as photosynthetic rate, usually decrease with water stress for most crops, cotton has proven to be drought resistant and deficit irrigation can serve as an effective management practice. Fifth, the effect of plant density on cotton yield and yield components is reviewed. Yield is decreased at high and low plant populations, and an optimum population must be determined for each location. Finally, the timing of irrigation termination (IT) is reviewed. Early IT can conserve water but may not result in maximum yields, while late IT can induce yield losses due to increased damage from pests. Extra water applied with late IT may adversely affect the yield and its quality and eventually compromise the profitability of the cotton production system. The optimum time for IT needs to be determined for each geographic location. The review compiles water-management studies dealing with cotton production in different parts of the world, and it provides information for sustainable cotton production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sushil K. Himanshu ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
JungJin Kim ◽  
Sayantan Samanta ◽  
...  

AbstractDetermining optimum irrigation termination periods for cotton (Gossypium hirsutum L.) is crucial for efficient utilization and conservation of finite groundwater resources of the Ogallala Aquifer in the Texas High Plains (THP) region. The goal of this study was to suggest optimum irrigation termination periods for different Evapotranspiration (ET) replacement-based irrigation strategies to optimize cotton yield and irrigation water use efficiency (IWUE) using the CROPGRO-Cotton model. We re-evaluated a previously evaluated CROPGRO-Cotton model using updated yield and in-season physiological data from 2017 to 2019 growing seasons from an IWUE experiment at Halfway, TX. The re-evaluated model was then used to study the effects of combinations of irrigation termination periods (between August 15 and September 30) and deficit/excess irrigation strategies (55%-115% ET-replacement) under dry, normal and wet years using weather data from 1978 to 2019. The 85% ET-replacement strategy was found ideal for optimizing irrigation water use and cotton yield, and the optimum irrigation termination period for this strategy was found to be the first week of September during dry and normal years, and the last week of August during wet years. Irrigation termination periods suggested in this study are useful for optimizing cotton production and IWUE under different levels of irrigation water availability.


2017 ◽  
Vol 8 (12) ◽  
pp. 1277-1284
Author(s):  
M. Orabi ◽  
H. El-Hoseiny ◽  
Y. Abd-El-Rahman ◽  
M. Khater

1979 ◽  
Vol 93 (2) ◽  
pp. 371-376 ◽  
Author(s):  
V. Skarlou ◽  
E. Papanicolaou ◽  
C. Nobeli ◽  
N. Katranis

SUMMARYTwo field experiments with cotton were conducted over two growing seasons on calcareous, heavy to medium textured, alluvial soils, to study the influence of N and P fertilizer rates, the method of fertilizer placement and the time of N fertilizer application on cotton yield, product quality and fertilizer utilization.Nitrogen application up to 50 kg/ha in the first experiment and up to 120 kg/ha in the second experiment increased seed cotton yield; higher nitrogen rates in the first experiment had an adverse effect on seed production due to abnormal rainfall which caused an intense vegetative growth and delayed the time of maturity.Split application of N at sowing and at early flowering was slightly superior to a single application at sowing or to split applications at sowing, early flowering and initiation of fruiting. Addition of nitrogen during the flowering stage failed to influence cotton production significantly.Banding P and N fertilizers increased plant height significantly, compared with the broadcasting method; placement methods, however, did not significantly affect seed yield.Increasing amounts of N and P fertilizers had essentially no effect on lint quality.The phosphate concentrations in the tops derived from fertilizer phosphate, were low ranging from 1–2 to 2–4 % of the P concentration in the tops and it was not affected by the different treatments.The utilization coefficients of the nitrogen fertilizer sources by cotton were high, nitrate N being utilized much more efficiently than ammonium N.


Sign in / Sign up

Export Citation Format

Share Document