scholarly journals Overexpression of Nepenthesin HvNEP-1 in Barley Endosperm Reduces Fusarium Head Blight and Mycotoxin Accumulation

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 203 ◽  
Author(s):  
Zelalem Eshetu Bekalu ◽  
Claus Krogh Madsen ◽  
Giuseppe Dionisio ◽  
Inger Bæksted Holme ◽  
Lise Nistrup Jørgensen ◽  
...  

Fusarium head blight (FHB) causes substantial losses of yield and quality in grains, both in the field and in post-harvest storage. To date, adequate natural genetic resistance is not available for the control of FHB. This study reports the cloning and overexpression of a barley (Hordeum vulgare L.) antifungal gene, nepenthesin 1 (HvNEP-1), in the endosperm of barley grains. Transgenic barley lines overexpressing HvNEP-1 substantially reduced FHB severity and disease progression after inoculation with Fusarium graminearum or Fusarium culmorum. The transgenic barley also showed reduced accumulation of the mycotoxin deoxynivalenol (DON) in grain, far below the minimum value allowable for food. Semi-field evaluation of four HvNEP-1 transgenic lines revealed substantial reduction of FHB severity and progression as compared with the control H. vulgare cultivar Golden promise (GP) plants. Our study demonstrated the utility of HvNEP-1 for the control of FHB in barley, and possibly other grains such as wheat and maize.

Plant Disease ◽  
2021 ◽  
Author(s):  
Bhavit Chhabra ◽  
Lovepreet Singh ◽  
Sydney Wallace ◽  
Adam Schoen ◽  
Yanhong Dong ◽  
...  

Fusarium head blight (FHB) primarily caused by Fusarium graminearum is a key disease of small grains. Diseased spikes show symptoms of premature bleaching shortly after infection and have aborted or shriveled seeds, resulting in reduced yields. The fungus also deteriorates quality and safety of the grain due to production of mycotoxins, especially deoxynivalenol (DON), which can result in grain being docked or rejected at the point of sale. Genetic host resistance to FHB is quantitative and no complete genetic resistance against this devastating disease is available. Alternative approaches to develop new sources of FHB resistance are needed. In this study, we performed extensive forward genetic screening of the M4 generation of an EMS induced mutagenized population of cultivar Jagger to isolate variants with FHB resistance. In field testing, 74 mutant lines were found to have resistance against FHB spread and 30 lines out of these also had low DON content. Subsequent testing over two years in controlled greenhouse conditions revealed ten M6 lines showing significantly lower FHB spread. Seven and six lines out of those 10 lines also had reduced DON content and lower FDKs, respectively. Future endeavors will include identification of the mutations that led to resistance in these variants.


Plant Disease ◽  
2021 ◽  
Author(s):  
Brian Mueller ◽  
Carol Groves ◽  
Damon L. Smith

Fusarium graminearum commonly causes Fusarium head blight (FHB) on wheat, barley, rice, and oats. Fusarium graminearum produces nivalenol and deoxynivalenol (DON) and forms derivatives of DON based on its acetylation sites. The fungus is profiled into chemotypes based on DON derivative chemotypes (3 acetyldeoxynivalenol (3ADON) chemotype; 15 acetyldeoxynivalenol (15ADON) chemotype) and/or the nivalenol (NIV) chemotype. The current study assessed the Fusarium population found on wheat and the chemotype profile of the isolates collected from 2016 and 2017 in Wisconsin. Fusarium graminearum was isolated from all locations sampled in both 2016 and 2017. Fusarium culmorum was isolated only from Door County in 2016. Over both growing seasons, 91% of isolates were identified as the 15ADON chemotype while 9% of isolates were identified as the 3ADON chemotype. Aggressiveness was quantified by area under disease progress curve (AUDPC). The isolates with the highest AUDPC values were from the highest wheat producing cropping districts in the state. Deoxynivalenol production in grain and sporulation and growth rate in vitro were compared to aggressiveness in the greenhouse. Our results showed that 3ADON isolates in Wisconsin were among the highest in sporulation capacity, growth rate, and DON production in grain. However, there were no significant differences in aggressiveness between the 3ADON and 15ADON isolates. The results of this research detail the baseline frequency and distribution of 3ADON and 15ADON chemotypes observed in Wisconsin. Chemotype distributions within populations of F. graminearum in Wisconsin should continue to be monitored in the future.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2281 ◽  
Author(s):  
Anne-Katrin Mahlein ◽  
Elias Alisaac ◽  
Ali Al Masri ◽  
Jan Behmann ◽  
Heinz-Wilhelm Dehne ◽  
...  

Optical sensors have shown high capabilities to improve the detection and monitoring of plant disease development. This study was designed to compare the feasibility of different sensors to characterize Fusarium head blight (FHB) caused by Fusarium graminearum and Fusarium culmorum. Under controlled conditions, time-series measurements were performed with infrared thermography (IRT), chlorophyll fluorescence imaging (CFI), and hyperspectral imaging (HSI) starting 3 days after inoculation (dai). IRT allowed the visualization of temperature differences within the infected spikelets beginning 5 dai. At the same time, a disorder of the photosynthetic activity was confirmed by CFI via maximal fluorescence yields of spikelets (Fm) 5 dai. Pigment-specific simple ratio PSSRa and PSSRb derived from HSI allowed discrimination between Fusarium-infected and non-inoculated spikelets 3 dai. This effect on assimilation started earlier and was more pronounced with F. graminearum. Except the maximum temperature difference (MTD), all parameters derived from different sensors were significantly correlated with each other and with disease severity (DS). A support vector machine (SVM) classification of parameters derived from IRT, CFI, or HSI allowed the differentiation between non-inoculated and infected spikelets 3 dai with an accuracy of 78, 56 and 78%, respectively. Combining the IRT-HSI or CFI-HSI parameters improved the accuracy to 89% 30 dai.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 943 ◽  
Author(s):  
Beata Toth ◽  
Andrea Gyorgy ◽  
Monika Varga ◽  
Akos Mesterhazy

In previous research, conidium concentrations varying between 10,000 and 1,000,000/mL have not been related to any aggressiveness test. Therefore, two Fusarium graminearum and two Fusarium culmorum isolates were tested in the field on seven genotypes highly differing in resistance at no dilution, and 1:1, 1:2, 1:4, 1:8, and 1:16 dilutions in two years (2013 and 2014). The isolates showed different aggressiveness, which changed significantly at different dilution rates for disease index (DI), Fusarium-damaged kernels (FDK), and deoxynivalenol (DON). The traits also had diverging responses to the infection. The effect of the dilution could not be forecasted. The genotype ranks also varied. Dilution seldomly increased aggressiveness, but often lower aggressiveness occurred at high variation. The maximum and minimum values varied between 15% and 40% for traits and dilutions. The reductions between the non-diluted and diluted values (total means) for DI ranged from 6% and 33%, for FDK 8.3–37.7%, and for DON 5.8–44.8%. The most sensitive and most important trait was DON. The introduction of the aggressiveness test provides improved regulation compared to the uncontrolled manipulation of the conidium concentration. The use of more isolates significantly increases the credibility of phenotyping in genetic and cultivar registration studies.


2011 ◽  
Vol 47 (No. 2) ◽  
pp. 58-63 ◽  
Author(s):  
J. Chrpová ◽  
V. Šíp ◽  
L. Štočková ◽  
L. Stemberková ◽  
L. Tvarůžek

Fusarium head blight (FHB) is a fungal disease causing substantial yield and quality losses in barley. Genetic variation in deoxynivalenol (DON) content and and important yield traits in response to FHB were studied in 44 spring barley cultivars for two years following artificial inoculation with Fusarium culmorum under field conditions. The analysis of variance revealed that the largest effect on DON content and simultaneously on the reduction of thousand grain weight and grain weight per spike were due to the environmental conditions of the year, while the visual disease symptoms depended on the cultivars to a larger extent. All these traits were significantly interrelated. The most resistant cultivars Murasski mochi, Nordic, Krasnodarskij 35, Krasnodarskij 95, Nordus, and Usurijskij 8, together with the resistant check Chevron, showed the lowest DON content, the lowest expression of disease symptoms and the lowest reduction of TGW and GWS. However, most spring barley cultivars registered in the Czech Republic in recent years expressed susceptibility or medium resistance and were considerably affected by the disease. This increases the importance of breeding barley for resistance to FHB.


Author(s):  
Evgeniy Dimitrov ◽  
◽  
Zlatina Peycheva Uhr ◽  
Blagoy Andonov ◽  
Nikolaya Velcheva ◽  
...  

2020 ◽  

This specially curated collection features four reviews of current and key research on fusarium in cereal crops. The first chapter describes how progress can be built over current agricultural practices in integrated pest management plans. It also addresses the disease cycle of Fusarium head blight, host–pathogen interactions, genetic resistance, the role of mycotoxins, as well as the impact of the disease on yields and loss of crop quality. The second chapter reviews current research on the main fungal diseases affecting barley, as well as what we know about the mechanisms of barley genetic resistance to fungal pathogens. It features detailed discussions on biotrophic foliar diseases such as stem rust and powdery mildew and necrotrophic diseases such as spot blotch and Fusarium head blight. The third chapter reviews control measures for Fusarium head blight, wheat blast and powdery mildew, including the development of resistant cultivars. The final chapter considers the current status of global wheat production, the impact of crop loss on food security and the emergence of the current regulatory environment surrounding pesticides. It also features discussions on the current status of the global fungicide market.


2008 ◽  
Vol 71 (6) ◽  
pp. 1266-1269 ◽  
Author(s):  
BING ZHOU ◽  
GUO-QING HE ◽  
PAUL B. SCHWARZ

Fusarium head blight occurs worldwide in barley production, and the Fusarium mycotoxins, particularly deoxynivalenol (DON), have become a major concern for barley products, such as beer. This study investigated the content of bound DON in barley samples that were naturally infected with Fusarium head blight. Free DON was determined by gas chromatography–electron capture detection after standard acetonitrile:water extraction, while total DON was determined using treatment with trifluoroacetic acid. Bound DON is the difference between the total and free values. Bound DON was detected in approximately 40% of the samples analyzed, and represented 6 to 21% of free DON. A preliminary study indicated that both free and bound DON decrease significantly during the steeping phase of malting. These results suggest that bound DON, like the free form, may be water-soluble.


Genome ◽  
2010 ◽  
Vol 53 (2) ◽  
pp. 111-118 ◽  
Author(s):  
G. T. Yu ◽  
J. D. Franckowiak ◽  
S. M. Neate ◽  
B. Zhang ◽  
R. D. Horsley

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein.) Petch), is one of the major diseases of barley (Hordeum vulgare L.) in eastern China, the Upper Midwest of the USA, and the eastern Prairie Provinces of Canada. To identify quantitative trait loci (QTL) controlling FHB resistance, a recombinant inbred line population (F6:7) was developed from the cross Zhenongda 7/PI 643302. The population was phenotyped for resistance to FHB in two experiments in China and four experiments in North Dakota. Accumulation of the mycotoxin deoxynivalenol was determined in one experiment in China and two in North Dakota. Simplified composite interval mapping was performed on the whole genome level using the software MQTL. The QTL FHB-2 from PI 643302 for FHB resistance was found on the distal portion of chromosome 2HL in all six FHB screening environments. This QTL accounted for 14% of phenotypic variation over six environments and was not associated with heading date or plant height. The FHB resistance QTL FHB-2 detected near the end of chromosome 2HL is in a different location from those found previously and is therefore probably unique. Because the QTL was not contributed by the Chinese cultivar Zhenongda 7, it is likely a native QTL present in North American barley. The QTL FHB-2 represents the first reported QTL for native FHB resistance in North American germ plasm and has been given the provisional name Qrgz-2H-14. This QTL should be considered for pyramiding with other FHB QTL previously mapped.


Sign in / Sign up

Export Citation Format

Share Document