scholarly journals Incorporating Biodiversity into Biogeochemistry Models to Improve Prediction of Ecosystem Services in Temperate Grasslands: Review and Roadmap

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 259 ◽  
Author(s):  
Marcel Van Oijen ◽  
Zoltán Barcza ◽  
Roberto Confalonieri ◽  
Panu Korhonen ◽  
György Kröel-Dulay ◽  
...  

Multi-species grasslands are reservoirs of biodiversity and provide multiple ecosystem services, including fodder production and carbon sequestration. The provision of these services depends on the control exerted on the biogeochemistry and plant diversity of the system by the interplay of biotic and abiotic factors, e.g., grazing or mowing intensity. Biogeochemical models incorporate a mechanistic view of the functioning of grasslands and provide a sound basis for studying the underlying processes. However, in these models, the simulation of biogeochemical cycles is generally not coupled to simulation of plant species dynamics, which leads to considerable uncertainty about the quality of predictions. Ecological models, on the other hand, do account for biodiversity with approaches adopted from plant demography, but without linking the dynamics of plant species to the biogeochemical processes occurring at the community level, and this hampers the models’ capacity to assess resilience against abiotic stresses such as drought and nutrient limitation. While setting out the state-of-the-art developments of biogeochemical and ecological modelling, we explore and highlight the role of plant diversity in the regulation of the ecosystem processes underlying the ecosystems services provided by multi-species grasslands. An extensive literature and model survey was carried out with an emphasis on technically advanced models reconciling biogeochemistry and biodiversity, which are readily applicable to managed grasslands in temperate latitudes. We propose a roadmap of promising developments in modelling.

2017 ◽  
Vol 114 (13) ◽  
pp. 3463-3468 ◽  
Author(s):  
Amelia A. Wolf ◽  
Erika S. Zavaleta ◽  
Paul C. Selmants

Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology—the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1047
Author(s):  
Gianni Bellocchi ◽  
Catherine Picon-Cochard

Associated with livestock farming, grasslands with a high diversity of plant species are at the core of low-input fodder production worldwide [...]


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 534
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Miloš Kučera ◽  
Pavel Cudlín

Plant distribution is most closely associated with the abiotic environment. The abiotic environment affects plant species’ abundancy unevenly. The asymmetry is further deviated by human interventions. Contrarily, soil properties preserve environmental influences from the anthropogenic perturbations. The study examined the supra-regional similarities of soil effects on plant species’ abundance in temperate forests to determine: (i) spatial relationships between soil property and forest-plant diversity among geographical regions; (ii) whether the spatial dependencies among compared forest-diversity components are influenced by natural forest representation. The spatial dependence was assessed using geographically weighted regression (GWR) of soil properties and plant species abundance from forest stands among 91 biogeographical regions in the Czech Republic (Central Europe). Regional soil properties and plant species abundance were acquired from 7550 national forest inventory plots positioned in a 4 × 4 km grid. The effect of natural forests was assessed using linear regression between the sums of squared GWR residues and protected forest distribution in the regions. Total diversity of forest plants is significantly dependent on soil-group representation. The soil-group effect is more significant than that of bedrock bodies, most of all in biogeographical regions with protected forest representation >50%. Effects of soil chemical properties were not affected by protected forest distribution. Spatial dependency analysis separated biogeographical regions of optimal forest plant diversity from those where inadequate forest-ecosystem diversity should be increased alongside soil diversity.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 427
Author(s):  
Tianyang Zhou ◽  
Jiaxin Zhang ◽  
Yunzhi Qin ◽  
Mingxi Jiang ◽  
Xiujuan Qiao

From supporting wood production to mitigating climate change, forest ecosystem services are crucial to the well-being of humans. Understanding the mechanisms that drive forest dynamics can help us infer how to maintain forest ecosystem services and how to improve predictions of forest dynamics under climate change. Despite the growing number of studies exploring above ground biomass (AGB) dynamics, questions of dynamics in biodiversity and in number of individuals still remain unclear. Here, we first explored the patterns of community dynamics in different aspects (i.e., AGB, density and biodiversity) based on short-term (five years) data from a 25-ha permanent plot in a subtropical forest in central China. Second, we examined the relationships between community dynamics and biodiversity and functional traits. Third, we identified the key factors affecting different aspects of community dynamics and quantified their relative contributions. We found that in the short term (five years), net above ground biomass change (ΔAGB) and biodiversity increased, while the number of individuals decreased. Resource-conservation traits enhanced the ΔAGB and reduced the loss in individuals, while the resource-acquisition traits had the opposite effect. Furthermore, the community structure contributed the most to ΔAGB; topographic variables and soil nutrients contributed the most to the number of individuals; demographic process contributed the most to biodiversity. Our results indicate that biotic factors mostly affected the community dynamics of ΔAGB and biodiversity, while the number of individuals was mainly shaped by abiotic factors. Our work highlighted that the factors influencing different aspects of community dynamics vary. Therefore, forest management practices should be formulated according to a specific protective purpose.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yamina Micaela Rosas ◽  
Pablo L. Peri ◽  
María Vanessa Lencinas ◽  
Romina Lasagno ◽  
Guillermo J. Martínez Pastur

Abstract Background Biodiversity supports multiple ecosystem services, whereas species loss endangers the provision of many services and affects ecosystem resilience and resistance capacity. The increase of remote sensing techniques allows to estimate biodiversity and ecosystem services supply at the landscape level in areas with low available data (e.g. Southern Patagonia). This paper evaluates the potential biodiversity and how it links with ecosystem services, based on vascular plant species across eight ecological areas. We also evaluated the habitat plant requirements and their relation with natural gradients. A total of 977 plots were used to develop habitat suitability maps based on an environmental niche factor analysis of 15 more important indicator species for each ecological area (n = 53 species) using 40 explanatory variables. Finally, these maps were combined into a single potential biodiversity map, which was linked with environmental variables and ecosystem services supply. For comparisons, data were extracted and compared through analyses of variance. Results The plant habitat requirements varied greatly among the different ecological areas, and it was possible to define groups according to its specialization and marginality indexes. The potential biodiversity map allowed us to detect coldspots in the western mountains and hotspots in southern and eastern areas. Higher biodiversity was associated to higher temperatures and normalized difference vegetation index, while lower biodiversity was related to elevation and rainfall. Potential biodiversity was closely associated with supporting and provisioning ecosystem services in shrublands and grasslands in the humid steppe, while the lowest values were related to cultural ecosystem services in Nothofagus forests. Conclusions The present study showed that plant species present remarkable differences in spatial distributions and ecological requirements, being a useful proxy for potential biodiversity modelling. Potential biodiversity values change across ecological areas allowing to identify hotspots and coldspots, a useful tool for landscape management and conservation strategies. In addition, links with ecosystem services detect potential synergies and trade-offs, where areas with the lowest potential biodiversity are related to cultural ecosystem services (e.g. aesthetic values) and areas with the greatest potential biodiversity showed threats related to productive activities (e.g. livestock).


2012 ◽  
Vol 1 (1) ◽  
pp. 48 ◽  
Author(s):  
Alan Hamilton ◽  
Shengji Pei ◽  
Huyin Huai ◽  
Seona Anderson

Compared to other groups of organisms, plants require distinctive approaches in their conservation because of their keystone roles in ecosystems and economies. The state of the whole plant cover of the Earth should be of concern to conservationists – for its capacity to ensure the survival of plant species, deliver ecosystem services (locally to globally) and provide produce from plants in ecologically sustainable ways. The primary targets of attention in ecosystem-based plant conservation are the relationships between people and plants, as relevant to every locality, rather than the species-centric approach of conventional plant conservation. Moving plant conservation to an ecosystem-based approach will require the development of training programmes for field practitioners and of information systems for their use.


2016 ◽  
Vol 64 (8) ◽  
pp. 696 ◽  
Author(s):  
Vinícius Coelho Kuster ◽  
Silvana Aparecida Barbosa de Castro ◽  
Fernando Henrique Aguiar Vale

The phytophysiognomies of the Neotropical savannah occur at different altitudes, which can determine distinctions in the levels of light and shade that plants are exposed. The focus of the study is analysing the functional traits of the leaves of Byrsonima verbascifolia (L.) Rich., Roupala montana Aubl. and Solanum lycocarpum A. St.-Hil. growing in phytophysiognomies at two distinct altitudes. We evaluated leaf anatomy, the quantum yield of photosystem II, and the photosynthetic pigments in plants occurring at two areas of Campo sujo, which are separated by 700 m of altitude, during the rainy season. The three plant species occurring at higher altitudes had thicker adaxial epidermis. B. verbascifolia and S. lycocarpum occurring at higher altitudes had thicker palisade parenchyma, whereas only B. verbascifolia had thicker spongy parenchyma at the same site. The quantum yield of photosystem II, and photosynthetic pigments had little differences between plants occurring at higher and lower altitudes. The results analysed show high structural modifications and low physiological alterations from altitudinal conditions. Thus, the influence of the abiotic factors appears to modulate the plastic responses of plants across altitude.


Check List ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 317 ◽  
Author(s):  
Gh. Hassan Dar ◽  
Akhtar H. Malik ◽  
Anzar A. Khuroo

The current paper provides a taxonomic inventory of the vascular plant species collected by the authors during the last two decades from the Rajouri and Poonch districts, located along the Pir Panjal range in the Indian Himalayan State of Jammu and Kashmir. The inventory records a total of 352 species, which belong to 270 genera in 83 families. Of the total taxa, the angiosperms are represented by 331 species in 253 genera and 77 families; gymnosperms by 12 species in 9 genera and 3 families; and pteridophytes by 9 species in 7 genera and 3 families. Asteraceae is the largest family, contributing 42 species; while Artemisia is the largest genus, with 5 species. The inventory is expected to provide baseline scientific data for further studies on plant diversity in these two border districts, and can be used to facilitate the long-term conservation and sustainable use of plant resources in this Himalayan region.


Sign in / Sign up

Export Citation Format

Share Document