scholarly journals Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 490
Author(s):  
Aleksandra Głowacka ◽  
Bogdan Szostak ◽  
Renata Klebaniuk

The aim of this study was to assess the effect of a three-year application of digestate from an agricultural biogas plant on the physicochemical properties of highly acidic pHKCl 4.4 ± 0.23, silty loam soils with low macronutrient content and on the yield and nutritional value of switchgrass (Panicum virgatum L.) biomass harvested for green fodder. The experiment included the following treatments: (1) O (control)—no fertilisation, (2) NPK—mineral fertilisation with (in kg ha−1) 150 N, 53.0 P and 105 K, (3) biogas digestate at 30 m3 ha−1 and (4) biogas digestate at 60 m3 ha−1. The higher application rate of biogas digestate significantly reduced soil acidity to pHKCl 4.9 ± 0.18 and improved its sorption properties. It also increased the soil organic matter content from 5.6 ± 0.21 to 6.4 ± 0.22 g Corg kg−1 and of K and Zn. The higher level of biogas digestate significantly increased switchgrass yield to 5.15 ± 0.26 t ha−1. The lower application rate of biogas digestate resulted in forage yield of 4.30 ± 0.20 t ha−1 comparable to that obtained after mineral fertilisation (4.33 ± 0.22 t ha−1). Following application of mineral fertilisers and the higher level of biogas digestate, the number of panicles per plant (150 ± 2.49–157 ± 0.6.17), panicle height (107 ± 1.98–114 ± 2.08), crude ash content (61.2 ± 0.43–65.5 ± 0.38) and protein content (106 ± 0.59–92 ± 1.11) in the switchgrass biomass from the first cut were higher than in the case of unfertilised soil (110 ± 3.81, 93 ± 1.32, 55.5 ± 0.40, 80.3 ± 0.37). The use of mineral fertilisers and biogas digestate increased the content of protein, P and Mg in biomass from the second cut. The results suggest that the use of digestate improved the physicochemical properties of highly acidic soil and increased the yield of switchgrass forage without diminishing its nutritional value.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yasin Erdoğan

Handere clay deposits were discovered at Adana in Turkey. These clay units primarily consist of uncoloured claystone, pebbly sandstone, sandstone, siltstone, and mudstone marl and include gypsum lenses and clay levels of various thicknesses in places. The physicochemical properties of these clays have been investigated by different techniques including Scanning Electron and Elemental Analysis (SEM and EDS), mineralogical analyses, chemical and physical analyses, X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), and Atterberg (Consistency) Limits Test. The mineralogical composition deduced from XRD is wide (smectite + palygorskite + illite ± feldspar ± chlorite ± quartz ± calcite ± serpentine) due to the high smectite contents (≈85%). SEM studies reveal that smectite minerals are composed of irregular platy leaves and show honeycomb pattern in the form of wavy leaves in places. The leaves presenting an array with surface edge contact are usually concentrated in the dissolution voids and fractures of volcanic glass. Organic matter content and loss on ignition analysis of raw materials are good for all the studied samples. In summary, Handere clays can be used as building materials in bricks, roof tiles, and cement and as a binder.


Author(s):  
Progress Oghenerume ◽  
Samuel Eduok ◽  
Basil Ita ◽  
Ofonime John ◽  
Inemesit Bassey

We evaluated the effect of 4000 mg zinc oxide (ZnO, 99%, 30 nm) nanoparticle on the physicochemical and microbiological properties of organic manure amended ultisol and loam soil cultivated with Arachis hypogaea using standard methods. The results indicate varying effects on the physicochemical properties in relation to the soil type. The pH of the control ultisol at 7.85 ± 0.17 and 8.3 ± 0.12 in the amended ultisol whereas, the control loam was 7.15 ± 0.17 and 7.41 ± 0.11 in the amended soil indicating 1.06- and 1.04-times higher difference than the controls respectively.  Phosphorus concentration at 57.82 ± 0.54%, 50.81 ± 0.22% and 55.97 ± 0.04%, 59.97 ± 0.02% was 1.14 times lower in the ZnO amended ultisol and 1.07 times higher in amended loam soil compared to the respective controls. The organic matter content in the control and amended ultisol was 2.28 ± 0.32% and 0.91 ± 0.02%, 3.68 ± 0.36% and 0.36 ± 0.02% in the control and amended loam soil. The concentration of nitrate in the control ultisol was 0.05 ± 0.01% and 0.03 ± 0.01% in the amended soil. The nitrate in the control loam soil was 0.08 ± 0.01% relative to 0.02 ± 0.01% in the treated soil and these differences were significant at p = 0.05. The concentration of nutritive salts was reduced and in contrast iron, copper, exchangeable acids, exchange capacity, clay and silt increased in the amended soils. Further to this, heterotrophic ammonia and nitrate-oxidizing bacterial population were inhibited in the amended soils and denitrifying organisms were stimulated. The organisms were members of the genera Pseudomonas, Xanthobacter, Enterobacter, Bacillus, Lactobacillus, Citrobacter, Nitrosomonas, Agromyces and Rhizobium. ZnO nanoparticles altered the soil physicochemical properties which exacerbated the negative effect on microbial abundance and varied with the soil type.


2021 ◽  
pp. 0734242X2110606
Author(s):  
Maliheh Fouladidorhani ◽  
Mohammad Shayannejad ◽  
Emmanuel Arthur

One of the approaches for recycling and reusing agricultural and animal wastes is to pyrolyse the residues and subsequently use them as soil amendments. The prevalence of several feedstocks suggests that it is necessary to investigate the optimal combinations of feedstocks and pyrolysis temperature for use as soil amendments. This study was done to evaluate five combinations of raw materials (sugarcane bagasse, rice husk, cow manure and pine wood) and their biochars produced by slow pyrolysis at 300°C and 500°C for soil amendment. Several physicochemical properties (electrical conductivity (EC), pH, cation exchange capacity (CEC), total organic matter content (C) total porosity (TP), total nitrogen (N), particle density (PD) and bulk density (BD)) were investigated. Comparison among feedstocks showed that the highest PD, BD and CEC were observed in WM (cow manure-pine wood). The pyrolysis process increased the PD, TP, N and monovalent cations and decreased EC, CEC and BD. Compared to the feedstock, pyrolysis increased the N content, but higher temperatures lowered the N content. Pyrolysis at 500°C reduced the EC, N, CEC and biochar yield by 18%, 13%, 21% and 24% respectively, compared to 300°C. Pyrolysis at 500°C increased the pH, Na+ and K+ by 17%, 12% and 22%, respectively, compared to 300°C. Considering the physicochemical properties of biochar and the costs, the bagasse-wood-rice (BWR) combination and temperature of 300°C are suggested for biochar production for soil amendment.


2022 ◽  
Vol 14 (2) ◽  
pp. 805
Author(s):  
Tianjing Ren ◽  
Yu’e Li ◽  
Tiantian Miao ◽  
Waseem Hassan ◽  
Jiaqi Zhang ◽  
...  

Excessive nitrogen fertilizer application in greenhouses could cause a significant variation in the nitrogen-use efficiency at the regional scale. This study aims to quantify agronomic nitrogen-use efficiency (AEN) and identify its driving factors across Chinese greenhouse tomato cultivation. Three hundred and forty-eight AEN values were obtained from 64 papers, including mineral nitrogen (MN) and mineral combined with organic nitrogen (MON) treatments. The average AEN values for the MN and MON treatments were 56.6 ± 7.0 kg kg−1 and 34.6 ± 3.5 kg kg−1, respectively. The AEN of the MN treatment was higher than that of the MON treatment for cultivation using soil with an organic matter content of less than 10 g kg−1 and the drip fertigation method. The AENs of the MN and MON treatments were divided into two segments according to the nitrogen application rate. The inflection points of the nitrogen application rate were 290 and 1100 kg N ha−1 for the MN and MON treatments, respectively. When the ratio of organic nitrogen to total nitrogen was less than 0.4, it was beneficial for improving the AEN. The soil organic matter content and the nitrogen application rate were the most critical factors determining the AEN. These results suggest that rationally reducing the nitrogen input and partially substituting mineral nitrogen with organic nitrogen can help improve the nitrogen-use efficiency.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 891-896 ◽  
Author(s):  
Mohammed B. Tahboub ◽  
William C. Lindemann ◽  
Leigh Murray

The pruning wood of pecan [Carya illinoinensis (Wangenh.) K. Koch] is often burned. Chipping and soil incorporation of pruning wood is becoming more popular as a result of environmental constraints on burning. The objective of our research was to determine how pecan wood incorporation into soil affects the soil chemical and physical properties. Pecan wood chips were incorporated into a silty clay soil at rates of 0, 4484, 8968, 13,452, and 17,936 kg·ha−1 in Summer 2002, 2003, and 2004. Some plots received nitrogen at a rate of 0, 15.2, 30.5, 45.7, and 61.0 kg·ha−1 to adjust the C : N ratio of trimmings to 30 : 1. Ammonium sulfate, as a nitrogen source to balance the C : N ratio of pecan wood chips, reduced soil pH. However, the wood chip amendments alone did not reduce soil pH. Soil salinity (as determined by electrical conductivity) and bulk density were unaffected by wood chip incorporation regardless of application rate or number of applications. Incorporation of pecan chips had little effect on soil moisture content, but the soil had an inherently high waterholding capacity. Pecan wood chip incorporation significantly increased soil organic matter content and aggregate stability, particularly at the higher application rates and with repeated amendment. The incorporation of pecan pruning wood into the soil appears to improve soil tilth and aggregation while providing growers with an environmentally acceptable means of disposal.


1990 ◽  
Vol 70 (3) ◽  
pp. 767-775 ◽  
Author(s):  
ADRIEN N’DAYEGAMIYE

A long-term field experiment was initiated on a Neubois silty loam in 1978 in the county of Levis, Québec to study the changes in soil characteristics and silage corn yields following manure application. Solid beef cattle manure was incorporated without fertilizer every 2 yr in fall, at rates of 0, 20, 40, 60, 80 and 100 t ha−1. Even when significant differences were observed between treatments low corn yields were obtained from 1978 to 1984. These low yields were related to the low N, P and K recoveries from applied manure. For the 20 t ha−1 application rate, N. P and K recoveries from manure in the first year were 28, 7 and 1396, respectively. N, P and K recovery decreased with manure application rates. Corn yields increased progressively, but they achieved their maximum value (10–12 t ha−1 DM) only in 1985 and after three manure applications. This was due to the important residual effect of manure. Highly significant increases in N (7–64%), P (80–300%) and K (37–158%) as well as other nutrients were associated with manure applications. Manure application also significantly increased soil pH, CEC and organic matter. Average yearly increases of organic matter content were 0.06% and 0.16% for 20 to 40 t ha−1, respectively, and varied from 0.20 to 0.30% for the highest application rates (60–100 t ha−1). These improvements of soil properties constitute the "indirect effect" of manure. This study showed that percent recovery of N, P and K from solid cattle manure was generally low. Thus, manure should be mainly considered as an organic amendment.Key words: Solid cattle manure, corn silage, percent recovery, pH, mineral nutrients, cation exchange capacity, organic matter


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 74-79 ◽  
Author(s):  
M. Toselli ◽  
P. Schiatti ◽  
D. Ara ◽  
A. Bertacchini ◽  
M. Quartieri

The investigation was carried out in 2005, on 30 plots chosen in the Central-Eastern part of the Emilia Romagna region, and cultivated with pear, grapevine and vegetable crops under the organic management system. For each crop, 5 plots with a level of calcium carbonate > 10% and 5 plots with a level of calcium carbonate < 3% were selected. For pear and vine, soil analyses were performed at the depths of 0–20 cm and 20–50 cm, for vegetable at the depth of 0–50 cm. Organic matter content was higher in pear-cultivated plots, followed by grapevine and vegetable crops. Copper application rate, from 1998 to 2004, was higher in pear and grapevine than in vegetable plots. Soil total and DTPA-extractable Cu were higher in pear and grapevine than in vegetable-cultivated plots. Soil DTPA-extractable Cu concentration was higher in the upper horizon than at 20–50 cm soil depth. The increase of total Cu in pear and vine-cultivated plots was combined with the increase of soil inactive Cu.


Author(s):  
Ikuesan Felix Adeleke ◽  
Boboye Bolatito Esther ◽  
Adetuyi Fatusi Clement

This research investigated the effects of varying concentrations of crude oil on some physicochemical characteristics of crude oil polluted agricultural soils from Igodan- Lisa, Oba-Ile and Ido-Ani areas of Ondo State, Nigeria. The soil samples were exposed to 1-4% (w/w) crude oil and analyzed monthly for six periods using standard physical and chemical analytical techniques. Results indicated that the physicochemical properties were altered. The physicochemical parameters varied with increase in the amount of crude oil spilled and time. The pH and moisture contents (MC) progressively decreased with increase in concentration of crude oil applied to the samples. Polluted soils had lower pH values (4.91- 6.17) and MC (15.24% to 26.83%) relative to control samples. The organic matter content increased with increased amount of crude oil spilled in the range of 6.65-10.93%. The organic carbon contents progressively increased with concentration of crude oil and sampling days. At 4% crude oil pollution, the organic carbon content in the samples were 6.04-8.28%, 5.39-7.82% and 6.05-8.21% for Igodan-Lisa, Oba-Ile and Ido-Ani soils respectively at 0-180 days of experiment. The changes in soil physicochemical suggested that soil integrity and quality is altered by crude oil contamination. The increased acidity with time also suggested the release of acidic metabolites in bioremediation by intrinsic microorganisms.


2021 ◽  
Vol 108 (3) ◽  
pp. 247-254
Author(s):  
Maryna Galytska ◽  
Maksym Kulyk ◽  
Dzhamal Rakhmetov ◽  
Vasyl Kurylo ◽  
Ilona Rozhko

Sign in / Sign up

Export Citation Format

Share Document