scholarly journals Physicochemical Properties of Handere Clays and Their Use as a Building Material

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yasin Erdoğan

Handere clay deposits were discovered at Adana in Turkey. These clay units primarily consist of uncoloured claystone, pebbly sandstone, sandstone, siltstone, and mudstone marl and include gypsum lenses and clay levels of various thicknesses in places. The physicochemical properties of these clays have been investigated by different techniques including Scanning Electron and Elemental Analysis (SEM and EDS), mineralogical analyses, chemical and physical analyses, X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), and Atterberg (Consistency) Limits Test. The mineralogical composition deduced from XRD is wide (smectite + palygorskite + illite ± feldspar ± chlorite ± quartz ± calcite ± serpentine) due to the high smectite contents (≈85%). SEM studies reveal that smectite minerals are composed of irregular platy leaves and show honeycomb pattern in the form of wavy leaves in places. The leaves presenting an array with surface edge contact are usually concentrated in the dissolution voids and fractures of volcanic glass. Organic matter content and loss on ignition analysis of raw materials are good for all the studied samples. In summary, Handere clays can be used as building materials in bricks, roof tiles, and cement and as a binder.

2004 ◽  
Vol 36 (1) ◽  
pp. 320 ◽  
Author(s):  
N. Kantiranis ◽  
Α. Georgakopoulos ◽  
A. Fiiippidis ◽  
A. Drakoulis

Four bottom ash samples from the Power Units of the Agios Dimitrios Power Plant were studied by the method of PXRD to determine their semi-quantitative mineralogical composition. Their organic matter content was calculated by a wet chemical process. Also, the loss on ignition was measured. The samples are constituted mainly of calcite, quartz and feldspars, while micas, clays, gehlenite and portlandite were determined in a few samples in smaller quantities. The amorphous material varied between 10-43 wt. %, while organic matter varied between 5-42 wt. %. Measurements of the loss on ignition overestimate the unburned lignite contents in the bottom ash samples. The management of bottom ashes with high contents of unburned lignite should differ to that of the fly ashes. The oxidation of the inorganic compounds of the unburned lignite may lead to environmental degradation of the landfill areas. Samples showing lower values of organic matter are suitable for a series of uses, such as: snow and ice control, as an aggregate in lightweight concrete masonry units,as a raw feed material for portland cement, as an aggregate in cold mix emulsified asphalt mixes, base or sub-base courses, or in shoulder construction. Systematic study of the unburned lignite of bottom ashes is needed for possible re-combustion.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ahmad Shobib

Cow manure can be used for making organic fertilizer because it contains nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K). Rice straw has a high C-Organic content. Adding straw compost will increase soil organic matter content. The study aims to determine the fermentation process that occurs so as to produce organic fertilize, know the effect of fermentation time and the effect of the composition of raw materials for cow manure and rice straw on the process of making organic fertilizer to the content of organic fertilizer according to SNI 7603 : 2018. The method use by aerobic fermentation is by mixing cow manure and rice straw and M-Dec bioactivators by comparison 3 : 1, 2 : 2,1 : 3 and fermentation time 7, 14, 21, 28 days. The parameters tested are C-organic, Nitrogen (N), C/N ratio, Phosphorus (P), and Potassium (K). The best quality organic fertilizer in the treatment of cow manure : rice straw with a ratio of 2 : 2 on the 28th day fermentation process namely C-organic content 34,63 %, C/N ratio is 25, macro nutrient content N+P2O5+K2O of 3,14 % that has met SNI 7763 : 2018. Keyword: M-Dec bioactivator, aerobic fermentation, cow manure, rice straw, C/N ratio


2020 ◽  
Vol 56 (1) ◽  
pp. 1
Author(s):  
George Christidis ◽  
Katerina Paipoutlidi ◽  
Ioannis Marantos ◽  
Vasileios Perdikatsis

A great variety of fine grained industrial rocks, which are valued by the industry contain variable amounts of amorphous or poorly crystalline matter, which is not easily detectable by the conventional mineralogical analysis methods based on X-ray diffraction (XRD). The quantification of amorphous matter in industrial rocks is a major task because it provides a thorough characterization of the raw materials and assists to interpret their reactivity. Among the most reliable methods used for quantification of amorphous matter, are those which are based on Rietveld refinement. In this study we prepared 1:1 mixtures of synthetic or natural calcite and quartz with 5-80% glass flour and added corundum (α-Al2O3) internal standard and applied the Autoquan2.80 © software based on the BGMN computer code to quantify the amorphous matter content. The mixtures with synthetic minerals yielded results with minimum absolute error due to the similar particle size of the minerals, the internal standard and the glass. By contrast, the mixtures with natural minerals displayed greater relative error due to the particle size difference between the minerals on the one hand and the internal standard and the glass on the other, due to the microabsorption effect. Moreover, preferred orientation was important in the case of natural calcite, due to perfect  cleavage plane. Mixtures containing up to 25% amorphous matter did not display the characteristic hump at 20-30 °2θ, suggesting that the lack of the hump is not a safe criterion for the recognition of amorphous matter.


Author(s):  
Progress Oghenerume ◽  
Samuel Eduok ◽  
Basil Ita ◽  
Ofonime John ◽  
Inemesit Bassey

We evaluated the effect of 4000 mg zinc oxide (ZnO, 99%, 30 nm) nanoparticle on the physicochemical and microbiological properties of organic manure amended ultisol and loam soil cultivated with Arachis hypogaea using standard methods. The results indicate varying effects on the physicochemical properties in relation to the soil type. The pH of the control ultisol at 7.85 ± 0.17 and 8.3 ± 0.12 in the amended ultisol whereas, the control loam was 7.15 ± 0.17 and 7.41 ± 0.11 in the amended soil indicating 1.06- and 1.04-times higher difference than the controls respectively.  Phosphorus concentration at 57.82 ± 0.54%, 50.81 ± 0.22% and 55.97 ± 0.04%, 59.97 ± 0.02% was 1.14 times lower in the ZnO amended ultisol and 1.07 times higher in amended loam soil compared to the respective controls. The organic matter content in the control and amended ultisol was 2.28 ± 0.32% and 0.91 ± 0.02%, 3.68 ± 0.36% and 0.36 ± 0.02% in the control and amended loam soil. The concentration of nitrate in the control ultisol was 0.05 ± 0.01% and 0.03 ± 0.01% in the amended soil. The nitrate in the control loam soil was 0.08 ± 0.01% relative to 0.02 ± 0.01% in the treated soil and these differences were significant at p = 0.05. The concentration of nutritive salts was reduced and in contrast iron, copper, exchangeable acids, exchange capacity, clay and silt increased in the amended soils. Further to this, heterotrophic ammonia and nitrate-oxidizing bacterial population were inhibited in the amended soils and denitrifying organisms were stimulated. The organisms were members of the genera Pseudomonas, Xanthobacter, Enterobacter, Bacillus, Lactobacillus, Citrobacter, Nitrosomonas, Agromyces and Rhizobium. ZnO nanoparticles altered the soil physicochemical properties which exacerbated the negative effect on microbial abundance and varied with the soil type.


2021 ◽  
pp. 0734242X2110606
Author(s):  
Maliheh Fouladidorhani ◽  
Mohammad Shayannejad ◽  
Emmanuel Arthur

One of the approaches for recycling and reusing agricultural and animal wastes is to pyrolyse the residues and subsequently use them as soil amendments. The prevalence of several feedstocks suggests that it is necessary to investigate the optimal combinations of feedstocks and pyrolysis temperature for use as soil amendments. This study was done to evaluate five combinations of raw materials (sugarcane bagasse, rice husk, cow manure and pine wood) and their biochars produced by slow pyrolysis at 300°C and 500°C for soil amendment. Several physicochemical properties (electrical conductivity (EC), pH, cation exchange capacity (CEC), total organic matter content (C) total porosity (TP), total nitrogen (N), particle density (PD) and bulk density (BD)) were investigated. Comparison among feedstocks showed that the highest PD, BD and CEC were observed in WM (cow manure-pine wood). The pyrolysis process increased the PD, TP, N and monovalent cations and decreased EC, CEC and BD. Compared to the feedstock, pyrolysis increased the N content, but higher temperatures lowered the N content. Pyrolysis at 500°C reduced the EC, N, CEC and biochar yield by 18%, 13%, 21% and 24% respectively, compared to 300°C. Pyrolysis at 500°C increased the pH, Na+ and K+ by 17%, 12% and 22%, respectively, compared to 300°C. Considering the physicochemical properties of biochar and the costs, the bagasse-wood-rice (BWR) combination and temperature of 300°C are suggested for biochar production for soil amendment.


2012 ◽  
Vol 512-515 ◽  
pp. 520-526
Author(s):  
Hang Zhou Yuan ◽  
Quan Guo Zhang ◽  
Yan Yan Jing ◽  
Xiang Feng Zhang ◽  
Yi Wang

This paper used respective ratios of 50%, 60%, 70%, 80%, 90% and 100% of straw and pig excrement as raw materials to produce biogas and fertilizer. The test focused on gas production, the contents of available nutritional elements nitrogen, phosphorus and potassium, and the organic matter content. The experimental results demonstrate the fermentation can produce more biogas, nitrogen, phosphorus, potassium, and organic mass under the conditions which the fermentation cycle is 15 days and the ratio of straw and excrement is 70%.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 490
Author(s):  
Aleksandra Głowacka ◽  
Bogdan Szostak ◽  
Renata Klebaniuk

The aim of this study was to assess the effect of a three-year application of digestate from an agricultural biogas plant on the physicochemical properties of highly acidic pHKCl 4.4 ± 0.23, silty loam soils with low macronutrient content and on the yield and nutritional value of switchgrass (Panicum virgatum L.) biomass harvested for green fodder. The experiment included the following treatments: (1) O (control)—no fertilisation, (2) NPK—mineral fertilisation with (in kg ha−1) 150 N, 53.0 P and 105 K, (3) biogas digestate at 30 m3 ha−1 and (4) biogas digestate at 60 m3 ha−1. The higher application rate of biogas digestate significantly reduced soil acidity to pHKCl 4.9 ± 0.18 and improved its sorption properties. It also increased the soil organic matter content from 5.6 ± 0.21 to 6.4 ± 0.22 g Corg kg−1 and of K and Zn. The higher level of biogas digestate significantly increased switchgrass yield to 5.15 ± 0.26 t ha−1. The lower application rate of biogas digestate resulted in forage yield of 4.30 ± 0.20 t ha−1 comparable to that obtained after mineral fertilisation (4.33 ± 0.22 t ha−1). Following application of mineral fertilisers and the higher level of biogas digestate, the number of panicles per plant (150 ± 2.49–157 ± 0.6.17), panicle height (107 ± 1.98–114 ± 2.08), crude ash content (61.2 ± 0.43–65.5 ± 0.38) and protein content (106 ± 0.59–92 ± 1.11) in the switchgrass biomass from the first cut were higher than in the case of unfertilised soil (110 ± 3.81, 93 ± 1.32, 55.5 ± 0.40, 80.3 ± 0.37). The use of mineral fertilisers and biogas digestate increased the content of protein, P and Mg in biomass from the second cut. The results suggest that the use of digestate improved the physicochemical properties of highly acidic soil and increased the yield of switchgrass forage without diminishing its nutritional value.


2009 ◽  
Vol 33 (5) ◽  
pp. 1481-1488 ◽  
Author(s):  
Vanusa Maria Feliciano Jacomino ◽  
Kerley Alberto Pereira de Oliveira ◽  
Maria Helena Tirollo Taddei ◽  
Maria Célia Siqueira ◽  
Maria Eleonora Deschamps Pires Carneiro ◽  
...  

Phosphogysum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A - Not Dangerous, Not Inert, Not Corrosive and Not Reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific 226Ra activity in the phosphogypsum samples (252 Bq kg-1) was below the maximum level recommended by USEPA, which is 370 Bq kg-1 for agricultural use. In addition, this study verified that natural radionuclides and metals concentrations in PG were lower than in the clayey Oxisol of Sete Lagoas, Minas Gerais, Brazil. These results indicated that the application of phosphogypsum as soil amendment in agriculture would not cause a significant impact on the environment.


Sign in / Sign up

Export Citation Format

Share Document