scholarly journals Identification and Genetic Diversity Analysis of Edible and Medicinal Malva Species Using Flow Cytometry and ISSR Molecular Markers

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 650
Author(s):  
Iwona Jedrzejczyk ◽  
Monika Rewers

The Malva genus contains species that reveal therapeutic properties and are mostly important in medicine and the functional food industry. Its breeding, cultivation, and utilization are based on proper germplasm/plant identification, which is difficult using morphological features. For this reason, we applied flow cytometry and inter simple sequence repeat polymerase chain reaction (ISSR-PCR) for fast and accurate species identification. Genome size estimation by flow cytometry was proposed as the first-choice method for quick accession screening. Out of the 12 tested accessions, it was possible to identify six genotypes based on genome size estimation, whereas all species and varieties were identified using ISSR markers. Flow cytometric analyses revealed that Malva species possessed very small (1.45–2.77 pg/2C), small (2.81–3.80 pg/2C), and intermediate (11.06 pg/2C) genomes, but the majority of accessions possessed very small genomes. Additionally, this is the first report on genome size assessment for eight of the accessions. The relationships between the investigated accessions showed the presence of two clusters representing malvoid and lavateroid group of species. Flow cytometry and ISSR molecular markers can be effectively used in the identification and genetic characterization of Malva species.

2020 ◽  
Vol 33 (4) ◽  
pp. 1017-1024
Author(s):  
FRANCIVAL CARDOSO FELIX ◽  
KYVIA PONTES TEIXEIRA DAS CHAGAS ◽  
CIBELE DOS SANTOS FERRARI ◽  
FÁBIO DE ALMEIDA VIEIRA ◽  
MAURO VASCONCELOS PACHECO

ABSTRACT Pityrocarpa moniliformis (Benth.) Luckow & R. W. Jobson (Fabaceae) is a native brazilian species with high potential for economic development programs in semiarid regions, mainly related to the production of honey, animal food and firewood. Thus, the objective of this work was to select Inter-Simple Sequence Repeat (ISSR) molecular markers for genetic diversity studies, as well as to test the efficiency of this approach in quantifying the genetic diversity of a natural P. moniliformis population. For this, 28 ISSR molecular markers were tested, evaluating the total number of loci, polymorphism rate and the Polymorphism Information Content (PIC) for the selected primers, the “Marker Index”, and the “Resolving Power”. Genetic diversity parameters (Nei genetic distance and Shannon index) were evaluated for 30 individuals located in Macaíba, Rio Grande do Norte State, Brazil. Seven primers were selected, which provided 74 loci, with 82% being polymorphic, while the PIC value was 0.344. The Nei genetic distance was 0.244, and the Shannon index was 0.374. Therefore, ISSR molecular markers (UBC 827, 840, 844, 857, 859, 860 and 873) are considered efficient in studying the genetic diversity of populations for the selection of matrices and germplasm banks, and may contribute to the conservation and genetic improvement of P. moniliformis populations.


Author(s):  
Maraisa Crestani Hawerroth ◽  
Patricia do Nascimento Bordallo ◽  
Luis Cláudio Pessoa Oliveira ◽  
Egnesio Holanda Vale ◽  
Francisco das Chagas Vidal Neto ◽  
...  

Abstract: The objective of this work was to evaluate the use of RAPD and ISSR molecular markers to determine the genetic variability among cashew (Anacardium spp.) genotypes, and to indicate possible promising crosses based on cashew genetic variability and phenotypic performance. Ten hybrids - derived from the crosses CCP 76 x BGC 589, CCP 76 x BRS 226, CCP 76 x HAC 276-1, CCP 76 x Embrapa 51, CCP 76 x BRS 253, CCP 76 x HAC222-4, and BRS226 x Embrapa 51 - and their parents were assessed at the molecular level. The hybrids were evaluated for nut yield, mean nut weight, bored nuts, and powdery mildew on nuts (scale 0-4). The RAPD and ISSR markers were efficient in the determinaton of the genetic variability among cashew genotypes, allowing of the grouping of 21 clusters. Associated with the phenotypic characterization of cashew nut for yield, weight, and health, the used markers can efficiently identify possible combinations with higher genetic variability and higher probability of developing transgressive genotypes in segregating populations.


2014 ◽  
Vol 92 (10) ◽  
pp. 847-851 ◽  
Author(s):  
Kelly L. Mulligan ◽  
Terra C. Hiebert ◽  
Nicholas W. Jeffery ◽  
T. Ryan Gregory

Ribbon worms (phylum Nemertea) are among several animal groups that have been overlooked in past studies of genome-size diversity. Here, we report genome-size estimates for eight species of nemerteans, including representatives of the major lineages in the phylum. Genome sizes in these species ranged more than fivefold, and there was some indication of a positive relationship with body size. Somatic endopolyploidy also appears to be common in these animals. Importantly, this study demonstrates that both of the most common methods of genome-size estimation (flow cytometry and Feulgen image analysis densitometry) can be used to assess genome size in ribbon worms, thereby facilitating additional efforts to investigate patterns of variability in nuclear DNA content in this phylum.


2021 ◽  
Author(s):  
Lalit Arya ◽  
Ramya Kossery Narayanan ◽  
Anjali Kak ◽  
Chitra Devi Pandey ◽  
Manjusha Verma ◽  
...  

Abstract Morinda (Rubiaceae) is considerably recognized for its multiple uses viz. food, medicine, dyes, firewood, tools, oil, bio-sorbent etc. The molecular characterization of such an important plant would be very useful for its multifarious enhanced utilization. In the present study, 31 Morinda genotypes belonging to two different species Morinda citrifolia and Morinda tomentosa collected from different regions of India were investigated using Inter Simple Sequence Repeat (ISSR) markers. Fifteen ISSR primers generated 176 bands with an average of 11.7 bands per primer, of which (90.34%) were polymorphic. The percentage of polymorphic bands, mean Nei’s gene diversity, mean Shannon’s information index in Morinda tomentosa and Morinda citrifolia was [(69.89%, 30.68%); (0.21 ± 0.19, 0.12 ± 0.20); (0.32 ± 0.27 0.17 ± 0.28)] respectively, revealing higher polymorphism and genetic diversity in Morinda tomentosa compared to Morinda citrifolia. Structure, and UPGMA cluster analysis placed the genotypes into well-defined separate clusters belonging to two species Morinda tomentosa and Morinda citrifolia revealing the utility of ISSR markers in species differentiation. Distinct ecotypes within a particular species could also be inferred emphasizing the collection and conservation of Morinda genotypes from different regions, in order to capture the overall diversity of respective species. Further higher diversity of M. tomentosa must be advanced for its utilization in nutraceutical, nutritional and other nonfood purposes.


2021 ◽  
Author(s):  
Jani Angel J. Raymond ◽  
Mudagandur Shashi Shekhar ◽  
Vinaya Kumar Katneni ◽  
Ashok Kumar Jangham ◽  
Sudheesh Kommu Prabhudas ◽  
...  

Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 554-563 ◽  
Author(s):  
Giovanni Dinelli ◽  
Alessandra Bonetti ◽  
Ilaria Marotti ◽  
Maurizio Minelli ◽  
Pietro Catizone

Three ItalianLoliumweed populations, one susceptible and two resistant to diclofop, were characterized by the technique of inter simple sequence repeats (ISSR). The goal of this study was to taxonomically identify theseLoliumpopulations as well as to evaluate evidence for introgression of ISSR fragments fromFestucaand the potential role of this introgression in the diclofop response. ISSR analysis confirmed the genomic background of the weed populations to be consistent with that ofLolium. However, the great range of variation in ISSR banding patterns highlighted that the three ryegrass accessions are mixed populations made up of individuals resulting presumably from intrageneric and intergeneric hybridization in theLolium–Festucacomplex. TwoFestucagenus-discriminating and 20Festucaspecies-discriminating ISSR markers were screened among all the three ryegrass populations. The resistant Tuscania population carried the highest percentage ofFestucagenome (16.8%) followed by the resistant Roma (13.6%) and susceptible Vetralla (7.6%) populations. On the basis of these data some influence ofFestucagenome in diclofop resistance levels of studied ryegrass populations could be hypothesized.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 111
Author(s):  
Yun-Sang Yu ◽  
Soyeong Jin ◽  
Namjoon Cho ◽  
Jongok Lim ◽  
Cheol-Hak Kim ◽  
...  

We estimated the genome size of a relict longhorn beetle, Callipogon relictus Semenov (Cerambycidae: Prioninae)—the Korean natural monument no. 218 and a Class I endangered species—using a combination of flow cytometry and k-mer analysis. The two independent methods enabled accurate estimation of the genome size in Cerambycidae for the first time. The genome size of C. relictus was 1.8 ± 0.2 Gb, representing one of the largest cerambycid genomes studied to date. An accurate estimation of genome size of a critically endangered longhorned beetle is a major milestone in our understanding and characterization of the C. relictus genome. Ultimately, the findings provide useful insight into insect genomics and genome size evolution, particularly among beetles.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4799-4799
Author(s):  
Bettina Keller ◽  
Markus P Radsak ◽  
Joerg Faber ◽  
Alexandra Russo

Abstract Abstract 4799 Background: Rapid identification and quantification of abnormal cell populations in minimal specimen are crucial for diagnosis and longitudinal minimal residual disease (MRD) testing of childhood leukemia. So far, most standard immunophenotypic analyses are performed using antibody panels with up to five-colors and require high cell numbers. For infant and pediatric specimen, high-level multicolor analyses is highly desirable to gather sufficient data for initial diagnostic and follow up monitoring of pathologic populations. Objective: In this study, we aimed to establish a newly defined pediatric multicolor flow cytometric panel algorithm with high reliability yet minimal specimen requirement. Results: We defined a 10-color flow cytometric panel using the new violet laser dye “KromeOrange (KO)”. Applying CD45-KO/Side Scatter gating, combined with 2 additional backbone markers the panel is designed in two consecutive steps. In the first step, a single standardized 10-color-“screening tube” (FITC-HLA-DR, PE-CD15/CD56, ECD-CD5, PC5.5-CD33, PC7-CD13, APC-CD117, APC A700-CD34, APC A750-CD19, PB-CD3, KrO-CD45) is applied for initial orientation of specific lineage assignment. Based on results obtained with the screening tube, a specific multi-tube “classification panel” is used to complete detailed characterization of lineage specific malignancy and maturation stage. Suitable specimens include fresh blood, bone marrow and all body fluids. All samples are stained directly with monoclonal antibodies, followed by the lyses of erythrocytes and a short wash. Compared to standard five color panel previously used the application of greater numbers of informative antibodies in the screening tube and in the 2ndstep muti-tube classification panel is cost and time efficient and results in a more precise characterization of any single event. Conclusion: Our panel construction and algorithm definition for infant and pediatric leukemia immunophenotyping is one of the first 10-color flow cytometry panels described for this application. Advantages are the possibility to obtain highly specific information from minimal specimens with significantly improved laboratory efficiency. The overall performance is currently tested in a routine clinical setting. Disclosures: No relevant conflicts of interest to declare.


Apidologie ◽  
2009 ◽  
Vol 40 (5) ◽  
pp. 517-523 ◽  
Author(s):  
Denilce Meneses Lopes ◽  
Carlos Roberto de Carvalho ◽  
Wellington Ronildo Clarindo ◽  
Milene Miranda Praça ◽  
Mara Garcia Tavares

Sign in / Sign up

Export Citation Format

Share Document