scholarly journals Propiyonik Asit Katkısının Toplam Karışım Rasyonu Yemin Aerobik Stabilite Özellikleri Üzerine Etkileri

Author(s):  
Ahmet Aslım ◽  
Berrin Okuyucu ◽  
Fisun Koç

This study investigated the effects of different levels of propionic acid addition on the aerobic stability characteristics of the total mixture ration. In the study, the effects of four different levels of propionic acid-based additives (0, 1.5, 3.0, 4.5%) on storage conditions of 26°C and 30°C. Feed samples were stored for 7 days, 3 replicates for each treatment group. Chemical and microbiological parameters were analysed in feed samples during aerobic stability. Temperature values and ambient temperature in each treatment were measured and recorded through temperature sensors for 7 days. The addition of additives in the study decreased the pH, dry matter, neutral detergent fiber, and yeast contents of total mixed ration, increased crude protein, eter extract, water soluble carbohydrate, lactic acid, and lactic acid bacteria contents and prevented mold growth. As a result of the research, the addition of 4.5% propionic acid allowed the total mixed ration to remain stable at 26°C for 7 days and 30°C for 5 days.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1575
Author(s):  
Fuhou Li ◽  
Zitong Ding ◽  
Adegbola T. Adesogan ◽  
Wencan Ke ◽  
Yun Jiang ◽  
...  

The effects of two strains of class IIa bacteriocin-producing lactic acid bacteria, Lactobacillus delbrueckii F17 and Lactobacillus plantarum (BNCC 336943), or a non-bacteriocin Lactobacillus plantarum MTD/1 (NCIMB 40027), on fermentation quality, microbial counts, and aerobic stability of alfalfa silage were investigated. Alfalfa was harvested at the initial flowering stage, wilted to a dry matter concentration of approximately 32%, and chopped to 1 to 2 cm length. Chopped samples were treated with nothing (control, CON), Lactobacillus delbrueckii F17 (F17), Lactobacillus plantarum (BNCC 336943) (LPB), or Lactobacillus plantarum MTD/1 (NCIMB 40027) (LPN), each at an application rate of 1 × 106 colony-forming units/g of fresh weight. Each treatment was ensiled in quadruplicate in vacuum-sealed polyethylene bags packed with 500 g of fresh alfalfa per bag and ensiled at ambient temperature (25 ± 2 °C) for 3, 7, 14, 30, and 60 days. The samples were then subjected to an aerobic stability test after 60 days of ensiling. Compared with the CON silage, the inoculants reduced the pH after 14 days of ensiling. After 60 days, pH was lowest in the LPB-treated silage, followed by the F17 and LPN-treated silages. Inoculation of F17 increased concentrations of lactic acid in silages fermented for 7, 14, 30, and 60 days relative to other treatments, except for the LPN-treated silages ensiled for 30 and 60 days, in which the lactic acid concentrations were similar to that of F17 silage. Application of F17 and LPB decreased the number of yeast and mold relative to CON and LPN-treated silages. Compared with the CON silage, inoculant-treated silages had greater aerobic stability, water-soluble carbohydrate, and crude protein concentrations, and lower neutral detergent fiber, amino acid nitrogen, and ammonia nitrogen concentrations. The LPB-treated silage had the greatest aerobic stability followed by the F17-treated silage. Both class IIa bacteriocin producing inoculants improved alfalfa silage fermentation quality, reduced the growth of yeasts and molds, and improved the aerobic stability of the ensiled forage to a greater extent than the proven LPN inoculant. However, higher crude protein concentration and lower ammonia nitrogen concentration were observed in LPN-treated silage relative to other treatments.


1995 ◽  
Vol 75 (3) ◽  
pp. 425-432 ◽  
Author(s):  
T. A. McAllister ◽  
L. B. Selinger ◽  
L. R. McMahon ◽  
H. D. Bae ◽  
T. J. Lysyk ◽  
...  

The effect of ensiling barley treated with two bacterial inoculants containing mixtures of Lactobacillus plantarum and Enterococcus faecium (1.0 × 105 cfu g−1 as fed silage) on the nutritional value and aerobic stability of barley silage was examined. Inoculants differed in the strains they contained and were originally selected by Pioneer Hi-Bred International for use with corn or alfalfa silage, SILA-BAC® (1174), or with grass silage (X2637). Concentrations of water-soluble carbohydrates were higher (P < 0.05) in inoculated than in control silages. Although inoculants appeared to increase the numbers of lactic acid producing bacteria (LAB) at ensiling, post-ensiling numbers (cfu g−1) of yeasts and molds were lower (P < 0.05) in inoculated than in control silages. Lactic acid concentrations and pH were similar among the silages and variations m the growth of yeast and mold populations could not be explained by differences in the production of volatile fatty acids (VFA) among silages. Inoculation of barley silage with either inoculant increased (P < 0.01) the average daily gain of lambs. A digestibility experiment with 12 growing ram lambs showed that inoculants did not alter (P > 0.05) DM intake, feed efficiency or the digestion of DM, organic matter, acid detergent fiber (ADF) and neutral detergent fiber (NDF). Nitrogen intake and retention were greater (P < 0.05) in lambs fed silage inoculated with 1174 as compared with control silage. Yeast populations were increased (P < 0.05) in control and 1174 after 2 d of exposure to air but it required 13 d for a similar yeast population to be established in X2637 silage. Increases in the mold populations within the silages were noted after 2, 5 and 13 d of exposure to air for control, 1174 and X2637, respectively. The temperature of control silage increased (P < 0.05) 2 d after exposure to air, whereas increases in temperature were delayed for 4 d in 1174 and 8 d in X2637. Temperatures rose as high as 30 °C in control silage, but did not exceed 24 °C in inoculated silages during the 13 d period. Key words: Barley silage, inoculant, digestion, aerobic stability, sheep, gain


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 518
Author(s):  
Vanessa P. Silva ◽  
Odilon G. Pereira ◽  
Eliana S. Leandro ◽  
Rosinea A. Paula ◽  
Mariele C. N. Agarussi ◽  
...  

The first part of the study aimed to isolate, characterize, and identify wild lactic acid bacteria (LAB) strains from alfalfa silage produced in a tropical area. LAB strains were isolated from alfalfa silage ensiled for 1, 3, 7, 14, 28, and 56 days (d) and were identified by sequencing the 16S rRNA gene. The second part aimed to investigate the effects of wild LAB strains on the nutritive and fermentative characteristics of alfalfa silage. This trial was conducted according to a completely randomized design in a 4 × 2 factorial scheme [four inoculants (I) × two harvests (H)], (n = 4). The inoculants were: (1) no inoculant (CTRL), (2) Lactobacillus pentosus (AV 14.17); (3) L. pentosus + Lactobacillus brevis + Pediococcus acidilactici (Combo); and (4) commercial inoculant (CI). Alfalfa forage (7 kg) was ensiled in 10 L buckets and opened after 90 d. Seventy-seven strains were isolated. Pediococcus, Lactobacillus, and Weissella represented 52.0, 24.7, and 20.8% of the isolates, respectively. For the first harvest, Combo, CI, and all inoculated silages showed lower acid detergent fiber ADF, neutral detergent fiber (NDF), and ammonia nitrogen (NH3-N), respectively. Silage fermented with AV14.17 presented greater residual water-soluble carbohydrate (WSC) in the second harvest and showed the lowest pH in both harvests. AV14.17 strain has potential as an inoculant for alfalfa silage production.


2011 ◽  
Vol 236-238 ◽  
pp. 305-308
Author(s):  
Jian Guo Zhang ◽  
Qin Hua Liu ◽  
Fu Yu Yang

To investigate the nutritive and ensiling characteristics of sweet corn processing by-products, the chemical compositions of corn bracts and cobs were analyzed and the effects of wilting and additives on the fermentation quality and aerobic stability were measured. The research results showed: Corn bracts and cobs had low fiber content and high nitrogen free extract content (> 61% DM),with high nutritive value; Corn bracts and cobs were of high water soluble carbohydrate contents (> 10% DM), low buffering capacity (< 150 mE/kg DM), more lactic acid bacteria (> 107cfu/g FM), they might be well preserved without any treatments, but their aerobic stability was poor; Barn and lactic acid bacteria addition had few effect on the fermentation except for reducing butyric acid content, wilting tended to increase lactic acid content and reduce the contents of volatile fatty acids.


2014 ◽  
Vol 54 (2) ◽  
pp. 165
Author(s):  
H. Mohammadzadeh ◽  
M. Khorvash ◽  
G. R. Ghorbani

A multi-species lactic acid bacterial inoculant (Lactisil maize, LM) was applied to whole-crop corn at different maturities in laboratory silos, to evaluate its effects on biochemical characteristics and aerobic stability. The corn crop was harvested at hard dough (HD, 253.1 g/DM kg), one-third milkline (ML, 293.7 g/DM kg) and one-third milkline with a killing frost (MLF, 297.6 g/DM kg). Crops were chopped to a 2.5-cm theoretical cut length, subsampled and treated with two levels of inoculant (LB1 = 1.5 × 105 cfu/g forage, LB2 = 3 × 105 cfu/g forage) or untreated (WO). The chemical composition of MLF crops was very similar to that of ML crops. However, lower (P < 0.01) numbers of lactic acid bacteria and higher numbers of yeast were enumerated in MLF than in ML crops. Higher percentages of DM and neutral detergent fibre and higher pH, but lower (P < 0.01) concentrations of water soluble carbohydrate and crude protein were measured in ML and MLF crops than in HD crops. Application of the inoculant increased (P < 0.01) concentrations of volatile fatty acids, neutral detergent fibre and acid detergent fibre in silages. Lactic acid concentration increased (P < 0.01) in HD treatments with an increasing level of inoculant. In contrast, the highest (P < 0.01) lactic acid concentration was measured in LB1 treatment compared with WO and LB2 in ML and MLF silages. Silages prepared from ML and MLF crops had higher (P < 0.01) lactic and acetic acid concentrations but lower (P < 0.01) butyric acid concentrations than did those prepared from HD. The pH in LB1 and LB2 silages was higher (P < 0.01) than that measured in WO silages. Aerobic stability was not influenced by inoculant treatment but low-DM silages were more (P < 0.01) resistant to spoilage. Frost-killed corn crops had a good potential to produce well fermented silage. Using LM resulted in silages with slightly higher fermentation products but it failed to improve aerobic stability of silage after 120 days of ensiling. These results indicated that inoculation of corn crops with LM for a short-duration ensilage period cannot enhance aerobic stability of silages due to insufficient acetic acid production from lactic acid conversion.


2011 ◽  
Vol 347-353 ◽  
pp. 189-192
Author(s):  
Hui Li Wang ◽  
Qi Zhong Sun ◽  
Fu Yu Yang ◽  
Chun Cheng Xu

This experiment was conducted to evaluate the effect of ensiling on fermentation quality and aerobic stability of a total mixed ration (TMR) containing wet brewers’ grains and corn straw. During the ensiling period, pH fell dramatically from 6.00 to 3.92 at the initial 3 days, then it maintained relatively stable. Lactic acid concentration firstly increased rapidly then it became slowly to reach 3.21% at day 28 post-ensiling. No propionic acid or butyric acid was observed throughout the ensiling. When exposed to air, the temperature of TMR increased quickly to reach a maximum of about 45°C at the 6-day, then it tended to decline until day 9. Later, it had another relative low peak at the 10-day, then it dropped slowly to be equal to air temperature. For TMR silage, no heat production or mold were detected in the entire period. In addition, during the days of exposure, the pH for TMR varied from 6.0-8.7, while TMR silages had no significant differences (3.86 to 3.87). The number of lactic acid bacteria (LAB) for the TMR decreased from the initial 3.2×103cfu g-1to below detectable levels and yeast counts increased by 1000 times. However, the TMR silage had no significant change in LAB and yeast counts. These results indicated that the TMR silage showed great quality and aerobic stability. Overall, fermentation plays an important part in helping total mixed ration silage forming a good aerobic stability.


2021 ◽  
Vol 9 (1) ◽  
pp. 52-59
Author(s):  
Xuxiong Tao ◽  
Chongwen Ji ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
...  

This study was conducted to investigate the effects of adding citric acid residue (CAR) with or without lactic acid bacteria (LAB) to Napier grass (Cenchrus purpureus; syn. Pennisetum purpureum) cv. Sumu No. 2 at ensiling on the fermentation quality and aerobic stability of the resulting silage. Treatments included: Control (Napier grass forage without additives); and Napier grass inoculated with lactic acid bacteria (Lactobacillus plantarum and L. buchneri) at 1 × 106 cfu/gfresh weight (FW) forage (LAB) or 36 g citric acid residue/kg FW forage (CAR) or a mixture of CAR and LAB (CL). Forty-five days after ensiling the silages were tested for chemical and microbial composition and an aerobic stability test was conducted. The addition of CAR with or without LAB increased the DM and lactic acid concentrations in silage and decreased pH plus acetic acid, ammonia nitrogen (NH3-N), neutral detergent fiber and cellulose concentrations relative to Control. The pH in LAB silage was lower than in Control, while lactic acid concentration was higher. During the first 2 days of aerobic exposure, all additives increased the water-soluble carbohydrate (WSC) and lactic acid concentrations and decreased pH plus NH3-N and acetic acid concentrations. Moreover, CL silages had the highest WSC and the lowest NH3-N and acetic acid concentrations during aerobic exposure. However, all additives failed to improve the aerobic stability of the silage. While CAR with or without LAB inoculant improved the fermentation quality of silage made from Napier grass, more studies are warranted to identify additives which can improve aerobic stability of the silage after opening.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Y. Acosta Aragón ◽  
J. Jatkauskas ◽  
V. Vrotniakiene

The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P<0.01), a significant increase in the total organic acids concentration (P<0.05), more lactic acid (P<0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P<0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P<0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P<0.01) and 1.00 % (P<0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P<0.01) and 3.4%.


Sign in / Sign up

Export Citation Format

Share Document