scholarly journals First Report of Glyphosate-Resistant Biotype of Eleusine Indica (L.) Gaertn. in Europe

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1692
Author(s):  
Donato Loddo ◽  
Gaetano Imperatore ◽  
Andrea Milani ◽  
Silvia Panozzo ◽  
Silvia Farinati ◽  
...  

Glyphosate-resistant biotypes of Eleusine indica (L.) Gaertn. have been detected in Asia, the Americas but not in Europe. The aim of this study was to evaluate resistance levels and possible target site resistance mechanisms of an E. indica biotype (19-1) collected from a plant nursery in Southern Italy where poor glyphosate efficacy was reported. Two dose-response experiments were conducted to evaluate the sensitivity of biotype 19-1 to glyphosate in comparison with two susceptible checks. 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) sequencing was performed to identify possible mutations conferring the resistance. The susceptible biotypes were completely controlled at the glyphosate recommended field dose of 360 g ae ha−1, while 50% of the plants of biotype 19-1 survived at 1440 g ae ha−1. The resistance index of biotype 19-1 ranged between 5.8 and 7.3 for the response variables of fresh weight reduction and plant survival, respectively. All the plants surviving glyphosate application and sampled for DNA analyses had the point mutation P106A. The biotype 19-1 can be confirmed as glyphosate-resistant, representing the first glyphosate-resistant population of E. indica in Europe.

Weed Science ◽  
2020 ◽  
Vol 68 (3) ◽  
pp. 253-259
Author(s):  
Yajun Peng ◽  
Lang Pan ◽  
Ducai Liu ◽  
Xiaomei Cheng ◽  
Guolan Ma ◽  
...  

AbstractChinese sprangletop [Leptochloa chinensis (L.) Nees] is one grass weed severely affecting rice (Oryza sativa L.) growth in paddies in China. Cyhalofop-butyl is the main herbicide used to control grass weeds in Chinese paddy fields, especially for controlling L. chinensis; however, L. chinensis has evolved resistance to cyhalofop-butyl due to continuous and extensive application. To investigate cyhalofop-butyl resistance levels and mechanisms in L. chinensis in some of the Chinese rice areas, 66 field populations were collected and treated with cyhalofop-butyl. Of these tested populations, 10 showed a high level of resistance to cyhalofop-butyl; the 50% effective dose ranged within 108.4 to 1,443.5 g ai ha−1 with resistance index values of 9.1 to 121.8 when compared with the susceptible population. Acetyl-coenzyme A carboxylase genes (ACCase) of susceptible and all 10 resistant populations were amplified and sequenced. Among them, Ile-1781-Leu, Trp-2027-Cys, Trp-2027-Ser, and Ile-2041-Asn mutations were found in five resistant populations. No known resistance-related mutations were found in the other five resistant populations, indicating that resistance to cyhalofop-butyl in these populations was likely to be endowed by non–target site resistance mechanisms. Notably, the Ile-1781-Leu and Trp-2027-Cys substitutions have previously been reported, but this is the first report of Trp-2027-Ser and Ile-2041-Asn mutations in L. chinensis. Furthermore, three derived cleaved amplified polymorphic sequence methods were developed to rapidly detect these mutations in L. chinensis.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 321-325 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
Jeremy M. Kichler ◽  
Rebekah D. Wallace ◽  
A. Stanley Culpepper

In 2006, Palmer amaranth with confirmed resistance to glyphosate (GLY-R) was not controlled effectively in cotton with pyrithiobac, an acetolactate synthase (ALS)-inhibiting herbicide. Glyphosate at 870 g ae ha−1or pyrithiobac at 70 g ai ha−1applied postemergence provided 5 to 28% control of a putative GLY/ALS-R Palmer amaranth biotype in the field. Glyphosate at 6,930 g ha−1and pyrithiobac at 420 g ha−1applied alone provided no more than 89 and 65% control 1 to 8 wk after treatment (WAT), respectively. When applied as a tank mixture, glyphosate plus pyrithiobac at 870 + 70 g ha−1provided between 16 and 41% control; glyphosate plus pyrithiobac at 6,930 + 420 g ha−1controlled the Palmer amaranth in the field 89 to 95%. Dose-response analyses developed from greenhouse data indicated that the estimated glyphosate rates required to produce 50% injury and reduce plant fresh weights by 50% relative to the nontreated control in a suspected GLY/ALS-R Palmer amaranth biotype were 12 and 14 times greater, respectively, than the estimated values for the susceptible (S) biotype. The predicted pyrithiobac rates required to produce the same responses in the putative resistant population were 151 (50% injury) and 563 times (50% fresh weight reduction) greater than the estimated rates for the S biotype. Field and greenhouse analyses confirm that the Palmer amaranth biotype evaluated in both studies is resistant to glyphosate and an ALS-inhibiting herbicide.


Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 534-538 ◽  
Author(s):  
Shuzhong Yuan ◽  
Yingjie Di ◽  
Yueyang Chen ◽  
Yongrui Chen ◽  
Jingxuan Cai ◽  
...  

AbstractBearded sprangletop [Diplachne fusca(L.) P. Beauv. ex Roem. & Schult. ssp.fascicularis(Lam.) P. M. Peterson & N. Snow] is a noxious annual grass weed of paddy fields, distributed in coastal regions of the Jiangsu and Hebei provinces in China. Cyhalofop-butyl has been widely used to control grass weeds since 2006 in China. Overreliance on cyhalofop-butyl has led to the evolution of resistant weeds. In this study, the resistance level and cyhalofop-butyl resistance mechanisms were investigated in the putative resistant (JSHH) population. The dose–response experiments showed that the JSHHD.fuscapopulation had evolved 8.9-fold resistance to cyhalofop-butyl. Acetyl-CoA carboxylase (ACCase) sequencing revealed a point mutation (GGC to GCC) at amino acid position 2096, resulting in a Gly-2096-Ala substitution in the resistant population. To our knowledge, this is the first case of cyhalofop-butyl resistance inD.fuscaand the first report of a target-site mutation conferring resistance to ACCase-inhibiting herbicides inD.fusca. In addition, the resistantD.fuscapopulation (JSHH) with the Gly-2096-Ala mutation was cross-resistant to the aryloxyphenoxypropionate herbicide metamifop, the cyclohexanedione herbicide sethoxydim, and the phenylpyrazolin herbicide pinoxaden.


Weed Science ◽  
2021 ◽  
pp. 1-17
Author(s):  
J. Scott McElroy ◽  
James R. Harris ◽  
Andrew Price ◽  
Alex Harkess ◽  
Xiao Li

Abstract A goosegrass (Eleusine indica (L.) Gaertn.) population uncontrolled by paraquat (R) in a vegetable production field in St. Clair County, Alabama was collected in Summer 2019. Research was conducted to assess the level of resistance of the suspected resistant population compared to three population with no suspected paraquat resistance (S1, S2, and S3). Visual injury at all rating dates and biomass reduction at 28 days after treatment (DAT) of S populations occurred exponentially to increasing paraquat rates. S biotypes were injured greater than R at 3 DAT with biomass recovery at 28 DAT only occurring at rates < 0.28 kg ha−1. Plant death or biomass reduction did not occur for any rate at any date for R. Paraquat rates that induced 50% or 90% injury or reduced biomass 50% or 90% compared to the non-treated (I50 or I90, respectively) ranged from 10 to 124X higher I50 for R compared to S and 54 to 116X higher I90 for R compared to S biotypes. These data confirm a paraquat resistant E. indica biotype in Alabama providing additional germplasm for study of Resistance to photosystem I-electron diverting (PSI-ED) resistance mechanisms.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Zienab Raeyat ◽  
Jabraiel Razmjou ◽  
Bahram Naseri ◽  
Asgar Ebadollahi ◽  
Patcharin Krutmuang

Due to the detrimental side-effects of synthetic pesticides, the use of nonchemical strategies in the management of insect pests is necessary. In the present study, the susceptibility of fourteen eggplant cultivars to green peach aphid (M. persicae) were investigated. According to preliminary screening tests, ‘Long-Green’, ‘Ravaya’ and ‘Red-Round’ as relatively resistant, and ‘White-Casper’ and ‘Pearl-Round’ as susceptible cultivars were recognized. In the antixenosis tests, the highest hosting preference was documented for ‘White-Casper’. Population growth parameters were used for evaluation of antibiosis. The highest and lowest developmental time (d) was observed on ‘Long-Green’ (4.33 d) and ‘White-Casper’ (3.26 d), respectively. The highest and lowest intrinsic rates of population increase (rm) were on ‘White-Casper’ (0.384 d−1) and ‘Long-Green’ (0.265 d−1), respectively. Significant differences were observed in the height and fresh and dry weight of infested and noninfected plants. Plant resistance index (PRI), as a simplified way to assess all resistance mechanisms, provides a particular value to determine the proper resistant cultivar. The greatest PRI value was observed on ‘Long-Green’. In general, the ‘Long-Green’ showed the least, and the ‘White-Casper’ displayed the most susceptibility among tested cultivars infested by M. persicae, which might be useful in integrated management of this pest.


Weed Science ◽  
2010 ◽  
Vol 58 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Joshua S. Yuan ◽  
Laura L. G. Abercrombie ◽  
Yongwei Cao ◽  
Matthew D. Halfhill ◽  
Xin Zhou ◽  
...  

The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic information about nontarget resistance mechanisms in any of them ranges from none to little. Here, we report a study combining iGentifier transcriptome analysis, cDNA sequencing, and a heterologous microarray analysis to explore potential molecular and transcriptomic mechanisms of nontarget glyphosate resistance of horseweed. The results indicate that similar molecular mechanisms might exist for nontarget herbicide resistance across multiple resistant plants from different locations, even though resistance among these resistant plants likely evolved independently and available evidence suggests resistance has evolved at least four separate times. In addition, both the microarray and sequence analyses identified non–target-site resistance candidate genes for follow-on functional genomics analysis.


Weed Science ◽  
2017 ◽  
Vol 66 (2) ◽  
pp. 234-245 ◽  
Author(s):  
Eric R. Page ◽  
Christopher M. Grainger ◽  
Martin Laforest ◽  
Robert E. Nurse ◽  
Istvan Rajcan ◽  
...  

Glyphosate-resistant populations ofConyza canadensishave been spreading at a rapid rate in Ontario, Canada, since first being documented in 2010. Determining the genetic relationship among existing Ontario populations is necessary to understand the spread and selection of the resistant biotypes. The objectives of this study were to: (1) characterize the genetic variation ofC. canadensisaccessions from the province of Ontario using simple sequence repeat (SSR) markers and (2) investigate the molecular mechanism (s) conferring resistance in these accessions. Ninety-eightC. canadensisaccessions were genotyped using 8 SSR markers. Germinable accessions were challenged with glyphosate to determine their dose response, and the sequences of 5-enolpyruvylshikimate-3-phosphate synthase genes 1 and 2 were obtained. Results indicate that a majority of glyphosate-resistant accessions from Ontario possessed a proline to serine substitution at position 106, which has previously been reported to confer glyphosate resistance in other crop and weed species. Accessions possessing this substitution demonstrated notably higher levels of resistance than non–target site resistant (NTSR) accessions from within or outside the growing region and were observed to form a subpopulation genetically distinct from geographically proximate glyphosate-susceptible and NTSR accessions. Although it is unclear whether other non–target site resistance mechanisms are contributing to the levels of resistance observed in target-site resistant accessions, these results indicate that, at a minimum, selection for Pro-106-Ser has occurred in addition to selection for non–target site resistance and has significantly enhanced the levels of resistance to glyphosate inC. canadensisaccessions from Ontario.


Sign in / Sign up

Export Citation Format

Share Document