scholarly journals Gluten Protein Compositional Changes in Response to Nitrogen Application Rate

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 325
Author(s):  
Daniela Horvat ◽  
Gordana Šimić ◽  
Krešimir Dvojković ◽  
Marko Ivić ◽  
Ivana Plavšin ◽  
...  

Field trials were conducted to evaluate the effect of nitrogen level on wheat protein content and composition in 16 cultivars over two years at three locations. The nitrogen treatment comprised two nitrogen levels, 0 kg ha−1 as low and 100 kg ha−1 as high nitrogen, applied as top dressings of 50 kg nitrogen per ha at tillering and stem extension growth stages. Increased nitrogen level generally enhanced grain protein by 11.3% (11.5% vs. 12.8%). Considering protein composition determined by reversed phase–high-pressure liquid chromatography, higher nitrogen supply generally enhanced the proportion of total gliadins, α-gliadins, γ-gliadins and high-molecular-weight glutenin subunits by 1.1%, 2.0%, 3.7%, 0.6% and 0.9%, respectively, and reduced albumins and globulins, ω-gliadins, total glutenins and low-molecular-weight glutenin subunits by 1.1%, 1.7%, 1.9% and 3.2%. Under a high nitrogen level, the historical cultivars Libellula, San Pastore and U-1 had a higher protein content (13.1–15.2%) with significantly higher total gliadins, which resulted in a significantly higher gliadin/glutenin ratio (1.68–1.92). In the modern cultivars, protein content varied between 11.4% and 14.6% with a well-balanced gliadin/glutenin ratio (1.08–1.50), except for cultivar MV Nemere which had a high gliadin/glutenin ratio at both nitrogen levels (1.81 vs. 1.87). In summary, increasing nitrogen level enhanced grain protein content while the composition of gliadin and glutenin fractions was changed to a lesser extent and was largely cultivar specific and therefore should be considered for wheat baking quality assessment and breeding purposes.

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2845
Author(s):  
Pablo F. Roncallo ◽  
Carlos Guzmán ◽  
Adelina O. Larsen ◽  
Ana L. Achilli ◽  
Susanne Dreisigacker ◽  
...  

Durum wheat grains (Triticum turgidum L. ssp. durum) are the main source for the production of pasta, bread and a variety of products consumed worldwide. The quality of pasta is mainly defined by the rheological properties of gluten, an elastic network in wheat endosperms formed of gliadins and glutenins. In this study, the allelic variation at five glutenin loci was analysed in 196 durum wheat genotypes. Two loci (Glu-A1 and Glu-B1), encoding for high-molecular-weight glutenin subunits (HMW-GS), and three loci (Glu-B2, Glu-A3 and Glu-B3), encoding for low molecular weight glutenin subunits (LMW-GS), were assessed by SDS-PAGE. The SDS-sedimentation test was used and the grain protein content was evaluated. A total of 32 glutenin subunits and 41 glutenin haplotypes were identified. Four novel alleles were detected. Fifteen haplotypes represented 85.7% of glutenin loci variability. Some haplotypes carrying the 7 + 15 and 7 + 22 banding patterns at Glu-B1 showed a high gluten strength similar to those that carried the 7 + 8 or 6 + 8 alleles. A decreasing trend in grain protein content was observed over the last 85 years. Allelic frequencies at the three main loci (Glu-B1, Glu-A3 and Glu-B3) changed over the 1915–2020 period. Gluten strength increased from 1970 to 2020 coinciding with the allelic changes observed. These results offer valuable information for glutenin haplotype-based selection for use in breeding programs.


2021 ◽  
Author(s):  
Pushpendra K. Gupta ◽  
Harindra S. Balyan ◽  
Parveen Chhuneja ◽  
Jai P. Jaiswal ◽  
Shubhada Tamhankar ◽  
...  

Abstract Improvement of grain protein content (GPC), loaf volume and resistance to rusts was achieved in 11 Indian wheat cultivars that are widely grown in four different agro-climatic zones of India. This involved use of marker-assisted backcrossing (MABC) for introgression and pyramiding of the following genes: (i) the high GPC gene Gpc-B1; (ii) HMW glutenin subunits 5 + 10 at Glu-D1 loci, and (iii) rust resistance genes, Yr36, Yr15, Lr24 and Sr24. GPC was improved by 0.8–3.3%, although high GPC was generally associated with yield penalty. Further selection among high GPC lines, allowed development of progenies with higher GPC associated with improvement in 1000-grain weight and grain yield in the following four cultivars: NI5439, UP2338, UP2382 and HUW468. The high GPC progenies (derived from NI5439) were also improved for grain quality using HMW glutenin subunits 5 + 10 at Glu-D1 loci. Similarly, progenies combining high GPC and rust resistance were developed in the backgrounds of following five cultivars: Lok1, HD2967, PBW550, PBW621 and DBW1. The improved pre-bred lines developed during the present study should prove useful for development of cultivars with improved nutritional quality associated with rust resistance in future wheat breeding programmes.


1971 ◽  
Vol 11 (49) ◽  
pp. 229
Author(s):  
GJ Wells

Eight fertilizer experiments were conducted at five locations in the Mallee from 1963 to 1966, following both lucerne and volunteer pastures, to study responses to applied phosphorus and nitrogen in wheat on sandy soils infested with skeleton weed (Chondrilla juncea). Each year two separate sites were selected-one having no history of sown pasture, the other having supported a poor, but typical lucerne stand for several years. In most years, grain yields were markedly increased by both nutrients following either lucerne or volunteer pasture, and a large positive interaction occurred between phosphorus and nitrogen at five sites. The response to nitrogen obtained after lucerne was due to the low density of the lucerne stands, which had had little effect on skeleton weed populations and soil nitrogen levels. Total yield variation depended mainly on the number of fertile tillers (66 per cent) and grain number per ear (19 per cent). On the other hand, the yield increases to phosphorus and nitrogen were attributed mainly to increases in the number of grains per ear, although increased tiller number also contributed. Grain weight was of little importance in both total yield and yield response. The level of grain protein content depended mainly on the growing season rainfall (r = -0.832). Application of phosphorus reduced grain protein content, and nitrogen increased it. The response to applied nitrogen was related to growing season rainfall (r = 0.783) and the difficulty of determining optimum rates of application is discussed.


1984 ◽  
Vol 24 (125) ◽  
pp. 255 ◽  
Author(s):  
DP Heenan

An experiment in temperature-controlled glasshouse chambers at Yanco Agricultural Institute examined floret sterility in lnga and Calrose rice induced by low temperature and high nitrogen level. Low temperature (12�C) ,for 4 d during microsporogenesis and anthesis produced considerable sterility in both cultivars; lnga was more sensitive than Calrose. Sensitivity was greatest when florets from the mid-section of the panicle were passing through the early microspore phase of pollen development. At both stages, the amount of low-temperature induced sterility was increased by high nitrogen supply. In the absence of low temperature, high nitrogen levels induced sterility in lnga only.


2021 ◽  
Author(s):  
Ofmara Maria Ponce Moreno ◽  
Maria Elena Lugo-Sanchez ◽  
Juan Carlos Ramírez-Suarez ◽  
Christine Johanna Band-Schmidt ◽  
Jesús Aarón Salazar-Leyva ◽  
...  

Abstract The use of by-products for fishmeal production is constantly rising. During this process, stickwater is generated, an effluent that contains organic matter in soluble, colloidal or particulate form. It has been shown that stickwater contains an important amount of protein and that its characterization is the first step into achieving its full valorization. Tuna canning by-product´s stickwater was centrifuged and fractionated by ultrafiltration to bring awareness to its protein quality. Stickwater had a net protein content of 61.4%, centrifuged stickwater maintained a similar protein content meanwhile the protein content in ultrafiltered fractions decreased as their molecular weight range decreased as well. Stickwater, centrifuged stickwater and the fraction R10 presented gel-like characteristics that could position this effluent as a potential source of gelatin. The electrophoretic profile of stickwater, centrifuged stickwater and centrifuged solids demonstrated that a high amount of protein in stickwater was soluble. This first glance at protein/peptides from tuna canning by-products is part of the ongoing effort to propose their recovery an alternative and sustainable use of a fish processing effluent with potential application as a source of peptides with algicidal bioactivity against harmful algal blooms (HABs).


1993 ◽  
Vol 44 (8) ◽  
pp. 1767 ◽  
Author(s):  
F MacRitchie ◽  
RB Gupta

Some recently developed methods for analysing wheat protein composition have been applied to studying the composition/functionality relationships for flours from grain samples of the wheat variety Olympic, grown under differing nitrogen/sulfur fertilizer treatments. In this way, the effects of changing protein composition on functional properties could be followed without the complication of allelic variation. Previous work had established that sulfur deficiency caused an imbalance in dough properties characterized by an increase in dough strength (extensograph maximum resistance, Rmax) and a decrease in extensibility (Ext). In the present study, decreasing flour sulfur content was accompanied by an increase in the ratio of high (HMW) to low (LMW) molecular weight glutenin subunits. As a result, the portion of polymeric proteins (those proteins such as glutenins whose molecules contain multiple polypeptide chains) that is unextractable in SDS-buffer solution (%UPP, a measure of molecular size distribution) also increased with a decrease in sulfur content. A highly significant correlation was found between Rmax and %UPP. In contrast, Rmax showed a high negative correlation with the percentage of polymeric protein in the total protein. Results are generally in agreement with previous studies of wheat samples which varied considerably in genotype but not in environment, thus establishing fundamental relationships between protein composition and dough properties. Extensibility related positively to the percentage of polymeric protein in the flour, but evidence suggested that Ext can be limited by a shift in the molecular weight distribution to too high molecular weight. Reduction in the percentage of polymeric protein in flour (and Ext) as a result of sulfur deficiency was due to a decrease in LMW glutenin subunits which are normally present in greater amounts than the HMW subunits. Dependence of dough mixing and baking performance parameters on protein composition is also reported.


2001 ◽  
Vol 28 (3) ◽  
pp. 193 ◽  
Author(s):  
Jean-Luc Carceller ◽  
Thierry Aussenac

The accumulation of polymeric proteins and the changes in molecular size distribution of these proteins were followed during grain filling and/or premature desiccation. The accumulation behavior of polymeric proteins and their constituent polypeptides (high and low molecular weight glutenin subunits, HMW-GS and LMW-GS) was determined by reversed phase-high performance liquid chromatography using a NaI/propanol purification procedure. With this new extraction and separation procedure, we have demonstrated that there was a coordinated initiation of storage protein biosynthesis, even if the accumulation rate varied greatly between the two main classes of proteins (i.e. monomeric and polymeric fractions). Moreover, the glutenin subunit composition was largely modified during glutenin accumulation. Both the HMW-GS/LMW-GS and HMW-GS-x/HMW-GS-y ratios increased significantly during the whole cell enlargement phase (from 16 to 37 d after anthesis). By applying premature grain desiccation during this physiological phase, we demonstrated that the polymerization index (SDS-insoluble polymers/total polymers) of the glutenin polymers was closely related to the HMW-GS/LMW-GS ratio of these proteins. An increase in the relative proportion of HMW-GS in glutenins caused the proportion of SDS-insoluble polymers to rise during grain desiccation. From these studies, it appears that the modification of the desiccation rate (grain desiccation at a constant temperature with variable relative humidity levels) induced a parallel modification of the glutenin insolubilization rate but did not affect the polymerization index of the glutenins at maturity.


2001 ◽  
Vol 52 (4) ◽  
pp. 485 ◽  
Author(s):  
J. F. Panozzo ◽  
H. A. Eagles ◽  
M. Wootton

Changes in glutenin, gliadin, glutenin subunit composition, and polymer size distribution were monitored for 4 cultivars of wheat (Triticum aestivum L.) throughout grain filling in an irrigated and non-irrigated environment over 2 seasons. The synthesis of glutenin and gliadin was modelled using a logistic function to determine the rate and duration of synthesis in response to environmental conditions. The maximum rate of synthesis of glutenin occurred approximately 6–8 days after the maximum rate of gliadins, with the duration extended by a similar period. High molecular weight glutenin subunits (HMWGS) were detected earlier than low molecular weight glutenin subunits (LMWGS). After the initial synthesis of HMWGS, there was a period at approximately mid grain filling when the rate of synthesis was reduced, followed by a period of more rapid synthesis in the latter stages of grain filling. In contrast, once detected, LMWGS increased at a faster rate than, and were in excess with respect to, HMWGS. Cultivar and environmental differences were observed, but in all cases the average molecular weight of polymeric glutenin increased throughout grain filling. Large polymers (>400 kD) increased continuously during grain filling, whereas polymers in the range 150–400 kD remained relatively constant and smaller polymers <150 kD decreased. As grain filling approached physiological maturity, there was a rapid increase in the synthesis of large polymers. The gliadin to glutenin ratio was almost the same in grain from adjacent irrigated and non-irrigated environments subjected to high temperatures at mid grain f illing, but the proportion of highly polymeric glutenin was greater from the non-irrigated environment.


Sign in / Sign up

Export Citation Format

Share Document