scholarly journals Cow Manure Application Cuts Chemical Phosphorus Fertilizer Need in Silage Rice in Japan

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1483
Author(s):  
Thanh Tung Nguyen ◽  
Yuka Sasaki ◽  
Mitsuhiko Katahira ◽  
Dhirendranath Singh

Cow manure is a good source of phosphorus (P). Here, we investigated whether the amount of P fertilizer can be reduced when cow manure is applied to paddy soil based on growth, P uptake, yield, and soil P status evaluation. Treatments included unfertilized control (CK); manure plus chemical nitrogen (N), potassium (K), and P fertilizer (MNK P); MNK and 75% P (MNK ¾ P); MNK and 50% P (MNK ½ P); MNK and 25% P (MNK ¼ P); and MNK. Manure was applied at the rate of 10 t ha−1 in fresh weight base. The P fertilizer was applied at 34.9 kg P ha−1 as full dose. Treatment with MNK resulted in the same growth, P uptake, and yield as that with the P fertilizer. P uptake and yield did not respond to P input from chemical fertilizer owing to high soil Olsen P levels. Moreover, MNK could maintain soil Olsen P and total P. Manure application resulted in a positive partial P balance. These results suggest that manure application can cut P fertilizer requirements in P-rich soils, while maintaining soil P for optimal rice growth and yield. By using cow manure in rice production, farmers can conserve finite P resources.

2018 ◽  
Vol 64 (No. 5) ◽  
pp. 214-220 ◽  
Author(s):  
Sun Benhua ◽  
Cui Quanhong ◽  
Guo Yun ◽  
Yang Xueyun ◽  
Zhang Shulan ◽  
...  

Temporal changes in the concentrations of plant-available phosphorus (P) in soil (Olsen-P), total soil-P and P activation coefficient (the ratio of Olsen-P to residual-P (i.e. an approximation to total-P)) were measured in plots that received consistent inorganic nitrogen, phosphorus and potassium plus organic fertilizers annually. Maize and winter wheat crops were grown in rotation for 24 years. Olsen-P and P activation coefficient declined significantly in the earlier years (< 12 years) for treatments that did not include any P fertilizer, and increased over the same period for the P-fertilized treatments. The rates of change in the Olsen-P and P activation coefficient values were positively related to P balance. In the later years, the Olsen-P and P activation coefficient plateau values were positively related to the P balance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenjia Yu ◽  
Guohua Li ◽  
Tobias Edward Hartmann ◽  
Minggang Xu ◽  
Xueyun Yang ◽  
...  

Phosphate (P) rock is a finite natural resource, and its use for P fertilizer production has resulted in its rapid depletion worldwide. In order to reduce the use of natural P resources, reducing the input of P into agricultural systems is necessary. The assessment of legacy P in soil is an option to maintain crop yield with low P fertilizer input. Many models have been tested to assess the contribution of legacy soil P to crop uptake. However, these models face a common challenge as conceptual soil P pools in models cannot be accurately initiated and evaluated using measured soil P indexes. In this study, a novel legacy P assessment (LePA) model was developed according to empirical equations about crop P uptake, soil Olsen-P, and total P from two long-term fertilizer experiments in typical calcareous and acidic soils in China. We used the DPPS (dynamic phosphorus pool simulator) model as a contrast model to estimate the simulation accuracy of the new LePA model. The calibration and validation datasets for both models were set-up by collecting data from two long-term fertilizer experiments in typical calcareous and acidic soils in China. The results showed that the LePA model simulated crop P uptake similar to the DPPS model in calcareous soil. While the DPPS model failed to depict crop P uptake under low pH conditions, the LePA model worked well after modification when limited crop growth caused by acidic conditions was considered. Moreover, the LePA model can also predict changes in soil TP and Olsen-P with P fertilizer application, which are new functions compared with the DPPS model. Based on a scenario analysis generated by the LePA model, P fertilizer application could be reduced by 52% in Yangling and 46% in Qiyang compared with the conventional application rate during this period to maintain the current yields if soil legacy P can be utilized efficiently. The LePA model is a useful tool for guiding soil P management from the field to country scales.


1995 ◽  
Vol 75 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Thi Sen Tran ◽  
Adrien N’dayegamiye

Long-term application of cattle manure and fertilizer can affect the forms and availability of soil phosphorus. This cumulative effect was evaluated on Le Bras silt loam (Humic Gleysol) cultivated with silage corn (Zea mays L.). In this long-term trial, treatments were arranged in a split-plot design, with dairy cattle manure applied at 0 and 20 Mg ha−1 as the main factor. The subplots consisted of six fertilizer treatments (NK, PK, NP, NPK, NPKMg and the unfertilized check). Fertilizer rates for silage corn were 150, 100, 150 and 40 kg ha−1 N, P205, K20 and Mg, respectively. The N fertilizer rate was reduced to 100 kg N ha−1 in manured plots. Soil inorganic P (Pi) and organic P (Po) fractions were sequentially extracted by resin, NaHCO3, NaOH, HCl and a final H2SO4 wet digestion of the residue. On average, labile P extracted by resin and NaHCO3 represented 17% of the total P (Pt); moderately labile NaOH-Pi and Po more than 40%; and stable P 36%. Application of manure and fertilizers increased significantly resin-, NaHCO3-, NaOH-Pi and Pt. However, NaOH-Po was decreased by P fertilizer application in NPK and NPKMg treatments, while long-term manure application maintained this Po pool in the soil. Stable P fractions were not affected by fertilization or by manuring. In all 6 yr of the study, P uptake by silage corn was significantly increased both by long-term N and P fertilizer application and also by manure incorporation. Phosphorus uptake by corn was highly related to all labile and moderately labile Pi fractions and Pt. Long-term application of dairy manure at a rate of 20 t ha−1 increased soil Pi forms and maintained Po fractions. Key words: Inorganic labile P, organic P, soil-P fractionation, P uptake, silage corn


2016 ◽  
Vol 40 (3) ◽  
pp. 203 ◽  
Author(s):  
Bambang Suwignyo ◽  
Bela Putra ◽  
Nafiatul Umami ◽  
Cahyo Wulandari ◽  
Ristianto Utomo

This study aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) and phosphate (P) fertilizer on the nutrient content, phosphate uptake and in vitro digestibility of alfalfa (Medicago sativa L.).The research was conducted at green house of Forage and Pastures Science Laboratory, Faculty of Animal Science Universitas Gadjah Mada. The experiment was arranged in Completely Randomized Design using 3x4 factorial patterns with four replications. The first factor was dosage of phosphate fertilizer SP 36 (0, 60, and 120 kg/ha). Second factor was the dosage of AMF (0, 0.8, 1.6, and 2.4kg/ha). The variable measured was nutrient contents (crude protein, dry matter, and organic matter), total P uptake and dry matter and organic matter in vitro digestibility. The results showed that the interaction of AMF and P fertilizer had no significant effect on crude protein and total P uptake, but highly significant effect on the parameters of dry matter, organic matter and dry matter and organic matter in vitro digestibility. 


2013 ◽  
Vol 59 (No. 11) ◽  
pp. 530-536 ◽  
Author(s):  
S. Wang ◽  
X. Liang ◽  
G. Liu ◽  
H. Li ◽  
X. Liu ◽  
...  

The effects of phosphorus (P) fertilizer on P loss potential, soil Olsen-P and neutral phosphatase activities in paddy soils fertilized with superphosphate or pig manure (PM) were evaluated in this paper. Data were collected from a field experiment in the Tai Lake Basin, China. Superphosphate rates were 0, 17.5, 26.7, and 35.0 kg P/ha, and PM rates were 0, 1.4, 2.1, and 2.8 t/ha for each crop, respectively. Soil Olsen-P in the plow layer increased to a greater extent with PM than with superphosphate. Pig manure increased neutral phosphatase activities in the plow layer compared with PM-free treatment. In contrast, superphosphate inhibited neutral phosphatase activities compared with superphosphate-free treatment. Spring application of P fertilizer markedly increased the total P of surface water in November (< 0.01 vs. 0.10 mg/L) compared with P-free treatment. The total P of shallow groundwater at a 75 cm depth was ~0.01 mg/L. Phosphorus fertilizer did not influence Olsen-P or neutral phosphatase activities under the plow layer. Downward movement of P did not occur. Appropriate rate of P application of 26.2 kg P/ha for each crop in this soil reduced the risk of P loss in the paddy wetland ecosystem.


1976 ◽  
Vol 86 (1) ◽  
pp. 181-187 ◽  
Author(s):  
A. P. Draycott ◽  
M. J. Durrant

SUMMARYTwenty experiments between 1970 and 1974 tested the effect of five amounts of triple superphosphate (0–110 kg P/ha) on sugar-beet yield in fields where soil contained little sodium bicarbonate-soluble phosphorus. The average yield without phosphorus fertilizer was 6·69 t/ha sugar and the increase from the optimum dressing 0·46 t/ha; the average soil concentration was 12 mg P/l. The fertilizer increased yield by 0·77 t/ha sugar on fields with 0–9 mg/l soil phosphorus, by 0·31 t/ha when soil phosphorus was 10–15 mg/l and had little effect on soils containing larger amounts.The concentration of phosphorus in plants harvested in mid-summer contained on average 0·29% P in dried tops and 0·13% in roots when given no phosphorus fertilizer, representing a total of 19·3 kg/ha P uptake. Giving superphosphate increased the phosphorus in both dried tops and roots by up to 0·03% and there was 3·7 and 1·7 kg/ha more phosphorus in tops and roots respectively. On the most responsive fields (0–9 mg/l soil P), the fertilizer increased the phosphorus in tops and roots by 0·05% and total uptake by 7 kg P/ha. The increase in uptake (or recovery) of fertilizer varied from 15% when 14 kg P/ha was given to less than 5% when 110 kg P/ha was used.A dressing of 27 kg P/ha was adequate for maximum yield on 19 of the 20 fields. When fields were grouped, 0–9, 10–15, 16–25 and > 26 mg/l NaHCO3-soluble soil phosphorus, and taking into account the value of the increased sugar yield, the cost of the fertilizer and its residual value, 60, 30, 20 and 10 kg P/ha respectively were the most profitable dressings. These experiments provide evidence, however, that the fertilizer would be used more efficiently if fields containing 0–9 mg soil phosphorus were subdivided into those with 0–4·5 and those with 4·6–9·0 mg/l and the groups given 80 and 40 kg P/ha respectively. These recommendations are substantially less than those used at present; they are adequate for sugar beet but other crops in the rotation would need similar close examination to ensure maximum yield and maintain adequate soil reserves of phosphorus.


2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 397 ◽  
Author(s):  
David Nash ◽  
Murray Hannah ◽  
Kirsten Barlow ◽  
Fiona Robertson ◽  
Nicole Mathers ◽  
...  

Phosphorus (P) exports from agricultural land are a problem world-wide and soil tests are often used to identify high risk areas. A recent study investigated changes in soil (0–20 mm), soil water and overland flow in 4 recently laser-graded (<1 year) and 4 established (laser-graded >10 years) irrigated pastures in south-eastern Australia before and after 3 years of irrigated dairy production. We use the results from that study to briefly examine the relationships between a series of ‘agronomic’ (Olsen P, Colwell P), environmental (water-extractable P, calcium chloride extractable P, P sorption saturation, and P sorption), and other (total P, organic P) soil P tests. Of the 2 ‘agronomic’ soil P tests, Colwell P explained 91% of the variation in Olsen P, and Colwell P was better correlated with the other soil tests. With the exception of P sorption, all soil P tests explained 57% or more of the total variation in Colwell P, while they explained 61% or less of Olsen P possibly due to the importance of organic P in this soil. Variations in total P were best explained by the organic P (85%), Calcium chloride extractable P (83%), water-extractable P (78%), and P sorption saturation (76%). None of the tests adequately predicted the variation in P sorption at 5 mg P/L equilibrating solution concentration. The results of this limited study highlight the variability between soil P tests that may be used to estimate P loss potential. Moreover, these results suggest that empirical relationships between specific soil P tests and P export potential will have limited resolution where different soil tests are used, as the errors in the relationship between soil test P and P loss potential are compounded by between test variation. We conclude that broader study is needed to determine the relationships between soil P tests for Australian soils, and based on that study a standard protocol for assessing the potential for P loss should be developed.


2018 ◽  
Vol 69 (6) ◽  
pp. 574
Author(s):  
G. K. McDonald ◽  
J. D. Taylor ◽  
X. Gong ◽  
W. Bovill

Genetic improvement in phosphorus (P) use efficiency (i.e. the ratio of biomass or yield at nil P to that at a given rate of application) is an important goal to improve P recovery and P efficiency of farming systems. Experiments were conducted at three sites in South Australia between 2009 and 2011 to characterise genetic variation in yield with no applied P and in the response to P fertiliser among a diverse range of barley (Hordeum vulgare L.) genotypes. In each experiment, 39–54 genotypes were grown at 0 or 30 kg P/ha. Responses to P were measured near the beginning of stem elongation by using normalised difference vegetation index (NDVI) and by harvesting the grain. Rhizosheath size was also measured on seedlings. Consistent differences in growth and yield at 0 kg P/ha were measured among the genotypes. By contrast, there were large environmental effects on responses to P, but some genotypes showed consistent responses. Measurements of growth, yield and P uptake on a subset of genotypes showed that most of the variation in biomass and yield could be attributed to variation in P-uptake efficiency (net total P uptake per unit available P) rather than to P-utilisation efficiency (biomass or yield per unit total P uptake). The size of the rhizosheath made a small contribution to variation in NDVI but not grain yield, suggesting that rhizosheath size may be of some benefit to early growth but that this does not persist through to yield. Genetic correlations between NDVI and yield were often weak but were generally positive at 0 kg P/ha. Correlations between responses in NDVI and responses in grain yield were low and often negative. The study identified several barley genotypes that showed consistent differences in yield at low P and responses to P; however, selection for P efficiency based solely on responses in vegetative growth may not be appropriate. Variation in P uptake appeared to be more important than P-utilisation efficiency for P efficiency in barley.


2013 ◽  
Vol 30 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Courtney Gallaher ◽  
Sieglinde S. Snapp

AbstractLegumes have been shown to enhance bioavailability of phosphorus (P) from sparingly soluble pools, yet this functional trait remains underutilized in agriculture, and is untested at decadal scales. Management and legume presence effects on temporal soil properties were evaluated in a 17-year field crop experiment using soil samples collected in 1992, 2000 and 2006. Management systems compared included: (1) conventional corn–soybean–wheat rotation (C–S–W), (2) organic (C–S–W+red clover), (3) alfalfa and (4) early successional field. To evaluate the effects of long-term management versus recent management (residues and P fertilizer) on P and bio-availability to soybean, subplots of soybean were established with and without P-fertilizer (30 kg P ha−1), and compared to subplots and main plot with the long-term system. We evaluated soil properties (C, total P, Bray extractable inorganic P, particulate organic matter phosphorus) and soybean P uptake, biomass and yield. Recent fertilizer P inputs had no detectable influence on soil P, and total soil P stayed stable at ~350 mg P kg−1, whereas inorganic P (Pi) declined from an initial value of 54 to an average of 35 mg P kg−1. A P balance was constructed and showed a net loss of −96.7 kg P ha−1 yr−1 for the organic system, yet Bray-Pi and soybean P uptake were maintained under organic production at similar levels to the conventional, fertilized system. Particulate organic matter P was 57, 82 and 128% higher in organic, alfalfa and successional treatments, respectively, compared to conventional. A similar pattern was observed for soil C, soybean yield and bioavailable P, which were 20–50% higher in the organic, alfalfa and successional systems relative to conventional. This study provides evidence that long-term management history influences bioavailability of P.


Sign in / Sign up

Export Citation Format

Share Document