scholarly journals Soil phosphorus and relationship to phosphorus balance under long-term fertilization

2018 ◽  
Vol 64 (No. 5) ◽  
pp. 214-220 ◽  
Author(s):  
Sun Benhua ◽  
Cui Quanhong ◽  
Guo Yun ◽  
Yang Xueyun ◽  
Zhang Shulan ◽  
...  

Temporal changes in the concentrations of plant-available phosphorus (P) in soil (Olsen-P), total soil-P and P activation coefficient (the ratio of Olsen-P to residual-P (i.e. an approximation to total-P)) were measured in plots that received consistent inorganic nitrogen, phosphorus and potassium plus organic fertilizers annually. Maize and winter wheat crops were grown in rotation for 24 years. Olsen-P and P activation coefficient declined significantly in the earlier years (< 12 years) for treatments that did not include any P fertilizer, and increased over the same period for the P-fertilized treatments. The rates of change in the Olsen-P and P activation coefficient values were positively related to P balance. In the later years, the Olsen-P and P activation coefficient plateau values were positively related to the P balance.

Soil Research ◽  
2011 ◽  
Vol 49 (3) ◽  
pp. 247 ◽  
Author(s):  
P. W. Moody

Biologically available phosphorus (P) is divided operationally into two sources, dissolved reactive P (DRP) and bioavailable particulate P (BPP). Dilute CaCl2-extractable soil P (CaCl2-P) is considered to be the benchmark method for estimating DRP in soils, whereas P desorbed to iron-oxide impregnated filter paper (FeO-P) is the benchmark method for BPP in soils and sediments. Neither of these methods is in routine use in Australia. Selected soil P analyses were carried out on 31 diverse surface soils to develop relationships between the environmental benchmark methods and the routine soil P tests of Colwell-P, Olsen-P, and the single-point P buffer index (PBI). The index (Colwell-P/PBI) was highly correlated with CaCl2-P (r = 0.925, P < 0.001), and both Olsen-P and Colwell-P were highly correlated with FeO-P (r = 0.955 and 0.828, respectively; P < 0.001). It is suggested that these measures can be used as environmental risk indicators for soil P status. The critical values of these measures for optimum productivity were compared to the values of these measures corresponding to threshold values of currently used environmental risk indicators.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1483
Author(s):  
Thanh Tung Nguyen ◽  
Yuka Sasaki ◽  
Mitsuhiko Katahira ◽  
Dhirendranath Singh

Cow manure is a good source of phosphorus (P). Here, we investigated whether the amount of P fertilizer can be reduced when cow manure is applied to paddy soil based on growth, P uptake, yield, and soil P status evaluation. Treatments included unfertilized control (CK); manure plus chemical nitrogen (N), potassium (K), and P fertilizer (MNK P); MNK and 75% P (MNK ¾ P); MNK and 50% P (MNK ½ P); MNK and 25% P (MNK ¼ P); and MNK. Manure was applied at the rate of 10 t ha−1 in fresh weight base. The P fertilizer was applied at 34.9 kg P ha−1 as full dose. Treatment with MNK resulted in the same growth, P uptake, and yield as that with the P fertilizer. P uptake and yield did not respond to P input from chemical fertilizer owing to high soil Olsen P levels. Moreover, MNK could maintain soil Olsen P and total P. Manure application resulted in a positive partial P balance. These results suggest that manure application can cut P fertilizer requirements in P-rich soils, while maintaining soil P for optimal rice growth and yield. By using cow manure in rice production, farmers can conserve finite P resources.


1993 ◽  
Vol 73 (1) ◽  
pp. 123-128 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner

In the Canadian prairie, producers generally sample soils in the autumn for nutrient analyses, whereas calibration of crop responses has been made based on soils sampled in the spring prior to seeding. A recent report suggests that available phosphorus (P) in soil increases between autumn and spring. At Swift Current, Saskatchewan, we have monitored bicarbonate-extractable P (Olsen P) every autumn and spring for the past 24 years, in four cropping systems: continuous wheat (Cont W), fallow-wheat (F-W), and two fallow-wheat-wheat (F-W-W) rotations. The first three systems received nitrogen (N) and P each crop year, with one F-W-W rotation receiving only N. These data were analyzed to test the authenticity of the aforementioned observations. We found that although there were some apparent overwinter increases in Olsen P there were also some decreases. Further, because of the considerable variability in Olsen P, relatively few of the overwinter changes were significant (P = 0.10). Efforts to correlate the changes in Olsen P to overwinter temperature or precipitation were unsuccessful. We concluded that Saskatchewan soil testing laboratories need not make adjustments to P fertilizer recommendations to account for changes in overwinter soil test P levels. Key words: Soil testing, bicarbonate-extractable P, crop rotations, available P


1976 ◽  
Vol 86 (1) ◽  
pp. 181-187 ◽  
Author(s):  
A. P. Draycott ◽  
M. J. Durrant

SUMMARYTwenty experiments between 1970 and 1974 tested the effect of five amounts of triple superphosphate (0–110 kg P/ha) on sugar-beet yield in fields where soil contained little sodium bicarbonate-soluble phosphorus. The average yield without phosphorus fertilizer was 6·69 t/ha sugar and the increase from the optimum dressing 0·46 t/ha; the average soil concentration was 12 mg P/l. The fertilizer increased yield by 0·77 t/ha sugar on fields with 0–9 mg/l soil phosphorus, by 0·31 t/ha when soil phosphorus was 10–15 mg/l and had little effect on soils containing larger amounts.The concentration of phosphorus in plants harvested in mid-summer contained on average 0·29% P in dried tops and 0·13% in roots when given no phosphorus fertilizer, representing a total of 19·3 kg/ha P uptake. Giving superphosphate increased the phosphorus in both dried tops and roots by up to 0·03% and there was 3·7 and 1·7 kg/ha more phosphorus in tops and roots respectively. On the most responsive fields (0–9 mg/l soil P), the fertilizer increased the phosphorus in tops and roots by 0·05% and total uptake by 7 kg P/ha. The increase in uptake (or recovery) of fertilizer varied from 15% when 14 kg P/ha was given to less than 5% when 110 kg P/ha was used.A dressing of 27 kg P/ha was adequate for maximum yield on 19 of the 20 fields. When fields were grouped, 0–9, 10–15, 16–25 and > 26 mg/l NaHCO3-soluble soil phosphorus, and taking into account the value of the increased sugar yield, the cost of the fertilizer and its residual value, 60, 30, 20 and 10 kg P/ha respectively were the most profitable dressings. These experiments provide evidence, however, that the fertilizer would be used more efficiently if fields containing 0–9 mg soil phosphorus were subdivided into those with 0–4·5 and those with 4·6–9·0 mg/l and the groups given 80 and 40 kg P/ha respectively. These recommendations are substantially less than those used at present; they are adequate for sugar beet but other crops in the rotation would need similar close examination to ensure maximum yield and maintain adequate soil reserves of phosphorus.


2020 ◽  
Author(s):  
Tonu Tonutare ◽  
Gert Kaldmae ◽  
Tiina Köster ◽  
Kadri Krebstein ◽  
Ako Rodima

&lt;p&gt;Due to increase of fertilizers prices and tightening of environmental protection requirements the need for efficient use of fertilizers has increased. At moment over the word huge number of different methods for determination of soil plant available phosphorus (PAP) are in use. Due to unequal extraction ability of extractants have each method own specific gradation to evaluate the soil P class. Allmost all widely used PAP extraction methods are developed in last century, mostly more than fifty years ago and often there is not possible to found information how the P status classes and fertilizer recommendations are determined for each method is determined.&lt;/p&gt;&lt;p&gt;The content of PAP in soil is difficult to estimate because soil pH has a strong effect to soil&amp;#160; - solution chemistry. Therefore extracting&amp;#160; soils with higly buffered solutions as for example Mehlich 3 can give overestimated results. The acidic Mehlich&amp;#160; 3 extactant can solubilize relatively insoluble Ca- Fe- and Al phosphates. Also the AL (acetate-lactate) method uses the buffered extraction solution and may influence the amount of extracted PAP. The most realistic conditions for PAP extraction can give the extraction solution which mimic the soil environment that has actively growing roots.&amp;#160;&lt;/p&gt;&lt;p&gt;The aim of our research was to investigate the extraction of PAP with extragent similar by chemical composition to soil solution with root exudates proposed by Haney et al (2010).&amp;#160; The obtained results were compared with Mehlich 3 and AL methods results.&amp;#160; &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Ref.: Haney, R.L., Haney, E.B., Hossner, L.R., Arnold, J,G. 2010. Modification to the New Soil Extractant H3A-1: A Multinutrient Extractant. Communications in Soil Science and Plant Analysis, 41:1513-1523.&lt;/p&gt;


2018 ◽  
Vol 69 (8) ◽  
pp. 846 ◽  
Author(s):  
Dangjun Wang ◽  
Zhibin He ◽  
Zhen Zhang ◽  
Qingfeng Du ◽  
Yong Zhang ◽  
...  

Low plant-available phosphorus (P) in degraded arid steppes greatly limits plant yields. However, whether exterior P addition will improve the soil P availability and thus increase plant yield in these degraded arid steppes is still not certain. In the current study, a severely degraded arid steppe in Inner Mongolia, China, with soil-available P <5 mg/kg, was fertilised annually with chemical or manure P for two years (2014, dry year; 2015, wet year). There were six fertilisation treatments: 0, 30 kg P/ha, 60 kg P/ha, 90 kg P/ha, 4000 kg sheep manure/ha (equalling 16.4 kg P/ha) and 8000 kg sheep manure/ha (32.8 kg P/ha). A pot experiment with Stipa krylovii (the dominant plant species in the tested steppe) and five P application rates (0, 30, 60, 90 and 120 kg P/ha) was also conducted, under well-watered and nitrogen-fertilised conditions, using surface soils from unfertilised plots in the field. Results indicated that the tested soils had strong P adsorption capacity and weaker desorption capacity, and that the labile P fractions were quickly transformed into less labile fractions, reducing P availabilities. Overall, chemical P fertiliser resulted in the accumulation of Ca10-P and occluded P, whereas sheep manure resulted in the accumulation of moderately resistant organic P and highly resistant organic P. Phosphorus fertilisation was associated with an increase in plant P concentrations in both 2014 and 2015, and a low P rate (30 kg P/ha in the current study) was able to improve the aboveground biomass in both the field experiment in the wet year and the pot experiment under well-watered conditions. Thus, in degraded arid steppes, P fertilisation may be unnecessary in dry years. A low rate of P fertilisation is recommended in wet years to improve soil P status and steppe plant productivity.


2006 ◽  
Vol 53 (2) ◽  
pp. 303-310 ◽  
Author(s):  
E. van Bochove ◽  
G. Thériault ◽  
F. Dechmi ◽  
A.N. Rousseau ◽  
R. Quilbé ◽  
...  

The indicator of risk of water contamination by phosphorus (IROWC_P) is designed to estimate where the risk of water P contamination by agriculture is high, and how this risk is changing over time based on the five-year period of data Census frequency. Firstly developed for the province of Quebec (2000), this paper presents an improved version of IROWC_P (intended to be released in 2008), which will be extended to all watersheds and Soil Landscape of Canada (SLC) polygons (scale 1:1, 000, 000) with more than 5% of agriculture. There are three objectives: (i) create a soil phosphorus saturation database for dominant and subdominant soil series of SLC polygons – the soil P saturation values are estimated by the ratio of soil test P to soil P sorption capacity; (ii) calculate an annual P balance considering crop residue P, manure P, and inorganic fertilizer P – agricultural and manure management practices will also be considered; and (iii) develop a transport-hydrology component including P transport estimation by runoff mechanisms (water balance factor, topographic index) and soil erosion, and the area connectivity to water (artificial drainage, soil macropores, and surface water bodies).


2017 ◽  
Vol 2 (6) ◽  
pp. 179
Author(s):  
Betty Natalie Fitriatin ◽  
Pujawati Suryatmana ◽  
Anny Yuniarti ◽  
Noor Istifadah

Ultisols has problems of low availability of nutrients, especially phosphorus. To improve soil phosphate and P fertilizer efficiency, it is necessary to develop biofertilizer such as phosphate solubilizing microbes. Phosphate solubilizing microbes (PSM) have the capability of dissolving soil phosphorus which have been adsorbed and can mineralize organic P to become inorganic P, hence increasing the avalibility of P in the soil. Phosphate solubilizing bacteria (Pseudomonas mallei and Pseudomonas cepacea) and phosphate solubilizing fungi (Penicillium sp. and Aspergillus sp) were selected based on their ability to dissolve P. The experiment was conducted at Jatinangor, West Java Indonesia to study the application of PSM biofertilizer to increase soil P and yield of maize. Experiment used a Randomized Block Design (RBD) in factorial pattern, consisting of two factors with three replications. The first factor consisted of PSM biofertilizer, which were; without PSM, 5 L ha-1 of PSM and 50 kg ha-1 of PSM.  The second factor was P fertilizer with five levels (0%, 25%, 50%, 75% and 100% dosage of recommendation). The results showed that the application of PSM biofertilizer increased soil phosphate and yield of maize on Ultisol Jatinangor.  The dosage of P inorganic fertilizers was reduced by 50%.Keywords: ultisol, maize, biofertillizer, phospate-solubilizing bacteria.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjia Yu ◽  
Haigang Li ◽  
Peteh Mehdi Nkebiwe ◽  
Guohua Li ◽  
Torsten Müller ◽  
...  

Modern phosphate (P) fertilizers are sourced from P rock reserves, a finite and dwindling resource. Globally, China is the largest producer and consumer of P fertilizer and will deplete its domestic reserves within 80 years. It is necessary to avoid excess P input in agriculture through estimating P demand. We used the legacy P assessment model (LePA) to estimate P demand based on soil P management at the county, regional, and country scales according to six P application rate scenarios: (1) rate in 2012 maintained; (2) current rate maintained in low-P counties and P input stopped in high-P counties until critical Olsen-P level (CP) is reached, after which rate equals P-removal; (3) rate decreased to 1–1.5 kg ha−1 year−1 in low-P counties after CP is reached and in high-P counties; (4) rate in each county decreased to 1–8 kg ha−1 year−1 after soil Olsen-P reached CP in low P counties; (5) rate in each county was kept at P-removal rate after reduction; (6) P input was kept at the rate lower than P-offtake rate after reduction. The results showed that the total P fertilizer demand of China was 750 MT P2O5, 54% of P fertilizer can be saved from 2013 to 2080 in China, and soil Olsen-P of all counties can satisfy the demand for high crop yields. The greatest potential to decrease P input was in Yangtze Plain and South China, which reached 60%. Our results provide a firm basis to analyze the depletion of P reserves in other countries.


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 117 ◽  
Author(s):  
Musibau O. Azeez ◽  
Gitte Holton Rubæk ◽  
Ingeborg Frøsig Pedersen ◽  
Bent T. Christensen

Soil phosphorus (P) reserves, built up over decades of intensive agriculture, may account for most of the crop P uptake, provided adequate supply of other plant nutrients. Whether crops grown on soils with reduced supply of other nutrients obtain similar use-efficiency of soil P reserves remains unclear. In treatments of the Askov Long-Term Experiment (initiated in 1894 on light sandy loam), we quantified changes in soil total P and in plant-available P (Olsen P, water extractable P and P offtake in wheat grains) when P-depleted soil started receiving P in rock phosphate and when P application to soil with moderate P levels ceased during 1997–2017. Additionally we studied treatments with soil kept unfertilised for &gt;100 years and with soil first being P depleted and then exposed to surplus dressings of P, nitrogen (N) and potassium in cattle manure. For soil kept unfertilised for &gt;100 years, average grain P offtake was 6 kg ha–1 and Olsen P averaged 4.6 mg kg–1, representing the lower asymptotic level of plant-available P. Adding igneous rock phosphate to severely P-depleted soil with no N fertilisation had little effect on Olsen P, water extractable P (Pw), grain yields and P offtake. For soils with moderate levels of available P, withholding P application for 20 years reduced contents of Olsen P by 56% (from 16 to 7 mg P kg–1) and of Pw by 63% (from 4.5 to 1.7 mg P kg–1). However, the level of plant-available P was still above that of unfertilised soil. Application of animal manure to P-depleted soil gradually raised soil P availability, grain yield and P offtake, but it took 20 years to restore levels of plant-available P. Our study suggests symmetry between rates of depletion and accumulation of plant-available P in soil.


Sign in / Sign up

Export Citation Format

Share Document