scholarly journals Crop Wild Relatives Crosses: Multi-Location Assessment in Durum Wheat, Barley, and Lentil

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2283
Author(s):  
Noureddine El Haddad ◽  
Miguel Sanchez-Garcia ◽  
Andrea Visioni ◽  
Abderrazek Jilal ◽  
Rola El Amil ◽  
...  

Crop wild relatives (CWR) are a good source of useful alleles for climate change adaptation. Here, 19 durum wheat, 24 barley, and 24 lentil elites incorporating CWR in their pedigrees were yield tested against commercial checks across 19 environments located in Morocco, Ethiopia, Lebanon, and Senegal. For each crop, the combined analysis of variance showed that genotype (G), environment (E), and genotype x environment (GxE) effects were significant for most of the traits. A selection index combining yield potential (G) and yield stability (GxE) was used to identify six CWR-derived elites for each crop matching or superior to the best check. A regression analysis using a climate matrix revealed that grain yield was mostly influenced by the maximum daily temperature and soil moisture level during the growing stages. These climatic factors were used to define five clusters (i.e., E1 to E5) of mega-environments. The CWR-derived elites significantly outperformed the checks in E1, E2, and E4 for durum wheat, and in E2 for both barley and lentil. The germplasm was also assessed for several food transformation characteristics. For durum wheat, one accession (Zeina) originating from T. araraticum was significantly superior in mixograph score to the best check, and three accessions originating from T. araraticum and T. urartu were superior for Zn concentration. For barley, 21 accessions originating from H. spontaneum were superior to the checks for protein content, six for Zn content, and eight for β-glucan. For lentil, ten accessions originating from Lens orientalis were superior to the check for protein content, five for Zn, and ten for Fe concentration. Hence, the results presented here strongly support the use of CWR in breeding programs of these three dryland crops, both for adaptation to climatic stresses and for value addition for food transformation.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1992
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali-Maltouf ◽  
Jan Valkoun ◽  
...  

Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi, S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The combined analysis of variance showed the highly significant effects of genotypes, environments, and genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha), heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four wild parents combined productivity and stability, making them suitable for unpredictable climatic conditions. A significant advantage in yield and stability was observed in Haurani derivatives compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5 derivatives; they had improved yield under unfavorable environments while maintaining the high yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a breeding pipeline. Comparing different stability approaches showed that some of them can be used interchangeably; others can be complementary to combine broad adaption with higher yield.


Crop Science ◽  
2020 ◽  
Author(s):  
Noureddine El Haddad ◽  
Hafssa Kabbaj ◽  
Meryem Zaïm ◽  
Khaoula El Hassouni ◽  
Amadou Tidiane Sall ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 750-757
Author(s):  
Yu Yanbo ◽  
Wang Qunliang ◽  
Kell Shelagh ◽  
Maxted Nigel ◽  
V. Ford-Lloyd Brian ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


2013 ◽  
Vol 93 (6) ◽  
pp. 1265-1270 ◽  
Author(s):  
C. J. Pozniak

Pozniak, C. J. 2013. CDC Desire durum wheat. Can. J. Plant Sci. 93: 1265–1270. CDC Desire durum wheat is adapted to the durum production area of the Canadian prairies. This conventional height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations and low grain cadmium. CDC Desire is strong-strawed and is earlier maturing than all check cultivars. CDC Desire expresses disease resistance similar to the current check cultivars.


2015 ◽  
Vol 95 (5) ◽  
pp. 1007-1012 ◽  
Author(s):  
C. J. Pozniak ◽  
J. M. Clarke

Pozniak, C. J. and Clarke, J. M. 2015. CDC Carbide durum wheat. Can. J. Plant Sci. 95: 1007–1012. CDC Carbide durum wheat is adapted to the durum production area of the Canadian prairies. This conventional-height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations, and low grain cadmium. CDC Carbide carries the Sm1 gene conferring resistance to the Orange Wheat Blossom Midge [Sitodiplosis modellana (Gehin)]. CDC Carbide is resistant to prevalent races of leaf, stem and stripe rust, and common bunt, and expresses end-use quality suitable for the Canada Western Amber Durum class.


Sign in / Sign up

Export Citation Format

Share Document