scholarly journals Contribution of Wild Relatives to Durum Wheat (Triticum turgidum subsp. durum) Yield Stability across Contrasted Environments

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1992
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali-Maltouf ◽  
Jan Valkoun ◽  
...  

Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi, S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The combined analysis of variance showed the highly significant effects of genotypes, environments, and genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha), heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four wild parents combined productivity and stability, making them suitable for unpredictable climatic conditions. A significant advantage in yield and stability was observed in Haurani derivatives compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5 derivatives; they had improved yield under unfavorable environments while maintaining the high yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a breeding pipeline. Comparing different stability approaches showed that some of them can be used interchangeably; others can be complementary to combine broad adaption with higher yield.

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1782
Author(s):  
Sourour Ayed ◽  
Imen Bouhaouel ◽  
Afef Othmani ◽  
Filippo Maria Bassi

In Mediterranean regions, the performance of durum wheat (Triticum turgidum L. var. durum Desf.) yield often varies due to significant genotype × environment interaction (GEI); therefore, yield stability is an important consideration in breeding programs. The aim of this research was to explore the GEI pattern and yield stability of 24 promising durum wheat lines, selected by ICARDA in several African countries (seven elites, four commercial varieties, and 13 durum wheat wide crosses, generated by hybridization of elites and Triticum dicoccoides Koern. ex Schweinf., Triticum araraticum Jakubz, and Aegilops speltoides Tausch) against a Tunisian local check variety ‘Salim’. Yield assessment was conducted across six environments under rainfed conditions, at the field station of Kef in a semi-arid region during four cropping seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) and in a sub-humid region at the station of Beja during two cropping seasons (2015–2016 and 2018–2019). The analysis of variance showed that the environment is the main source of variation of grain yield (72.05%), followed by the interaction environments × genotypes (25.33%) and genotypes (2.62%). The genotype × genotype by environment model (PC) based on grain yield identified a mega-environment including Kef (2016–2017 and 2017–2018) and Beja (2015–2016 and 2018–2019) and elite line 22 as a widely adapted genotype. Combined analysis, computed using the average grain yield of lines and the yield stability wide adaptation index (AWAI), showed that elite lines 9 and 23 (2.41 and 2.34 t·ha−1, respectively), and wild relative-derived lines, 5, 1, and 10 (2.37, 2.31, and 2.28 t·ha−1, respectively) were more stable and better yielding than the national reference (2.21 t·ha−1). This finding supports the good yield potential of wild relative-derived lines. The five selections are recommended to be developed in multi-environments in several regions of Tunisia, especially in semi-arid area.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 558
Author(s):  
Xing Huang ◽  
Su Jang ◽  
Backki Kim ◽  
Zhongze Piao ◽  
Edilberto Redona ◽  
...  

Rice yield is a complex trait that is strongly affected by environment and genotype × environment interaction (GEI) effects. Consideration of GEI in diverse environments facilitates the accurate identification of optimal genotypes with high yield performance, which are adaptable to specific or diverse environments. In this study, multiple environment trials were conducted to evaluate grain yield (GY) and four yield-component traits: panicle length, panicle number, spikelet number per panicle, and thousand-grain weight. Eighty-nine rice varieties were cultivated in temperate, subtropical, and tropical regions for two years. The effects of both GEI (12.4–19.6%) and environment (23.6–69.6%) significantly contributed to the variation of all yield-component traits. In addition, 37.1% of GY variation was explained by GEI, indicating that GY performance was strongly affected by the different environmental conditions. GY performance and genotype stability were evaluated using simultaneous selection indexing, and 19 desirable genotypes were identified with high productivity and broad adaptability across temperate, subtropical, and tropical conditions. These optimal genotypes could be recommended for cultivation and as elite parents for rice breeding programs to improve yield potential and general adaptability to climates.


2002 ◽  
Vol 138 (3) ◽  
pp. 249-253 ◽  
Author(s):  
F. MEKBIB

Phenotypic yield stability is a trait of special interest for plant breeders and farmers. This value can be quantified if genotypes are evaluated in different environments. Common bean is the main cash crop and protein source of farmers in many lowland and mid-altitude areas of Ethiopia. An experiment was undertaken to evaluate common bean genotypes for yield performance at Alemaya, Bako and Nazreth in Ethiopia for 3 years. The yield performance of genotypes was subjected to stability analysis and yield-stability statistics were generated to aid the selection of genotypes that were high yielding and very stable. The significant genotype by environment interaction indicated that the relative performance of the varieties altered in the different environments. Genotype yield performance varied ranging from 1511–2216 kg/ha. Simultaneous selection for yield and yield-stability statistics using YS(i) statistics indicated that A 410, GLP x92, Mx-2500-19, G 2816, A-195, 997-CH-1173, Diacol calima, ICA 15541 and AND 635 were both high yielding and stable. Following this study, using farmers’ evaluation and other criteria, GLP x92 and G-2816 were identified as preferred genotypes and were released for further production.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2283
Author(s):  
Noureddine El Haddad ◽  
Miguel Sanchez-Garcia ◽  
Andrea Visioni ◽  
Abderrazek Jilal ◽  
Rola El Amil ◽  
...  

Crop wild relatives (CWR) are a good source of useful alleles for climate change adaptation. Here, 19 durum wheat, 24 barley, and 24 lentil elites incorporating CWR in their pedigrees were yield tested against commercial checks across 19 environments located in Morocco, Ethiopia, Lebanon, and Senegal. For each crop, the combined analysis of variance showed that genotype (G), environment (E), and genotype x environment (GxE) effects were significant for most of the traits. A selection index combining yield potential (G) and yield stability (GxE) was used to identify six CWR-derived elites for each crop matching or superior to the best check. A regression analysis using a climate matrix revealed that grain yield was mostly influenced by the maximum daily temperature and soil moisture level during the growing stages. These climatic factors were used to define five clusters (i.e., E1 to E5) of mega-environments. The CWR-derived elites significantly outperformed the checks in E1, E2, and E4 for durum wheat, and in E2 for both barley and lentil. The germplasm was also assessed for several food transformation characteristics. For durum wheat, one accession (Zeina) originating from T. araraticum was significantly superior in mixograph score to the best check, and three accessions originating from T. araraticum and T. urartu were superior for Zn concentration. For barley, 21 accessions originating from H. spontaneum were superior to the checks for protein content, six for Zn content, and eight for β-glucan. For lentil, ten accessions originating from Lens orientalis were superior to the check for protein content, five for Zn, and ten for Fe concentration. Hence, the results presented here strongly support the use of CWR in breeding programs of these three dryland crops, both for adaptation to climatic stresses and for value addition for food transformation.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 454 ◽  
Author(s):  
Alejandro del Pozo ◽  
Iván Matus ◽  
Kurt Ruf ◽  
Dalma Castillo ◽  
Ana María Méndez-Espinoza ◽  
...  

In Chile, durum wheat is cultivated in high-yielding Mediterranean environments, therefore breeding programs have selected cultivars with high yield potential in addition to grain quality. The genetic progress in grain yield (GY) between 1964 and 2010 was 72.8 kg ha−1 per year. GY showed a positive and significant correlation with days to heading, kernels per unit ground area and thousand kernel weight. The gluten and protein content tended to decrease with the year of cultivar release. The correlation between the δ13C of kernels and GY was negative and significant (−0.62, p < 0.05, for all cultivars; and −0.97, p < 0.001, excluding the two oldest cultivars). The yield progress (genetic plus agronomic improvements) of a set of 40–46 advanced lines evaluated between 2006 and 2015 was 569 kg ha−1 per year. Unlike other Mediterranean agro-environments, a longer growing cycle together with taller plants seems to be related to the increase in the GY of Chilean durum wheat during recent decades.


2018 ◽  
Vol 46 (1) ◽  
pp. 65-74 ◽  
Author(s):  
José F.T. GANANÇA ◽  
José G.R. FREITAS ◽  
Humberto G.M. NÓBREGA ◽  
Vanessa RODRIGUES ◽  
Gonçalo ANTUNES ◽  
...  

Taro [Colocasia esculenta (L.) Schott] is a root crop which is an important staple food in many regions of the world, producing 10.5 million tonnes on 1.4 million hectares a year. The crop is cultivated in wet (rain fed) or irrigated conditions, requiring on average 2,500 mm water per year, and in many countries it is cultivated in flooded plots. It is estimated that taro production could decrease by 40% as a result of the increase in drought and other severe events. In this work, thirty three accessions, including local cultivars, selected and hybrid lines were submitted to long duration drought stress and screened for tolerance. Twelve physiological, morphological and agronomic traits were measured at harvest, and subject to multivariate analysis. Stress indices, Water Use Efficiency and Factorial Analysis were useful for discriminating accessions regarding drought tolerance and yield stability, and drought tolerant and susceptible cultivars were identified. Our results confirm that different taro cultivars have different drought avoidance and tolerance strategies to cope with water scarcity. Better yield performers minimised biomass and canopy loss, while tolerance was observed in cultivars that presented low potential yield, but efficiently transferred resources to enhance corm formation. Among the 33 accessions, two local cultivars showed high yield stability and could be considered as suitable parents for breeding programs, while two others are well adapted to drought, but with overall low yield potential.


2020 ◽  
Vol 21 (15) ◽  
pp. 5260 ◽  
Author(s):  
Samir Alahmad ◽  
Yichen Kang ◽  
Eric Dinglasan ◽  
Elisabetta Mazzucotelli ◽  
Kai P. Voss-Fels ◽  
...  

Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha−1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha−1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.


2001 ◽  
Vol 81 (1) ◽  
pp. 17-27 ◽  
Author(s):  
C. A. Grant ◽  
K. R. Brown ◽  
G. J. Racz ◽  
L. D. Bailey

Effective fertilizer management is critical to maintain economic production and protect long-term environmental quality. Field studies were conducted over 4 yr at two locations in southwestern Manitoba to determine the effect of source, timing and placement of N on grain yield and N recovery of durum wheat (Triticum durum L. ‘Sceptre’) under reduced-tillage (RT) and conventional-tillage (CT) management. The effect of N management on durum grain yield and N recovery differed with soil type and tillage system. On the clay loam (CL) soil, lower yields with fall- as compared with spring-banded N were more frequent under RT than CT. Lower yields occurred more frequently with fall-applied as compared with spring-applied urea ammonium nitrate (UAN) than when urea or NH3 was the N source. On the drier fine sandy loam (FSL) soil, fall applications of N generally produced similar to higher grain yield than did spring applications. Differences among fertilizer sources and tillage systems were much less frequent with spring than fall applications of N. Where differences occurred, durum grain yields were higher with in-soil than surface applications of urea or UAN. In-soil applications of urea and UAN increased durum grain yield as compared with surface applications more frequently under RT than CT on the CL soil where yield potential was high, whereas increases on the FSL were as common under CT as under RT. On soils with a high yield potential, enhanced immobilisation and/or volatilisation of surface-applied N may reduce grain yield by reducing available N, particularly under RT. Selection of a suitable source-timing and placement combination to optimise crop yield may be more important under RT than CT. Key words: Conservation tillage, direct seeding, placement


Kultivasi ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Darmawan Saptadi ◽  
Noer Rahmi Ardiarini ◽  
Budi Waluyo

AbstrakKacang Bogor (Vigna subterranea (L.) Verdcourt) potensial dikembangkan sebagai komoditi pangan rendah lemak. Pengembangan dan peningkatan hasil komoditas ini dapat dilakukan melalui penyediaan varietas unggul. Tujuan penelitian ini ialah untuk mengetahui stabilitas dan adaptabilitas hasil enam galur harapan kacang Bogor, yaitu GSG 2.1.1, GSG 2.5, GSG 1.5, CCC 1.4.1, PWBG 5.3.1, dan BBL 6.1.1.  Penelitian dilakukan di tiga lokasi yang memiliki karakteristik ketinggian tempat, kondisi lahan, dan musim tanam berbeda. Percobaan menggunakan rancangan acak kelompok dengan tiga ulangan yang dilanjutkan dengan analisis varians gabungan. Analisis regresi digunakan untuk menentukan stabilitas dan adaptabilitas hasil berdasarkan Eberhart-Russell dan Finlay-Wilkinson. Hasil penelitian menunjukkan terdapat interaksi genotipe x lingkungan pada bobot hasil panen polong segar dan bobot hasil biji kering. Galur GSG 2.5 dan CCC 1.4.1 mempunyai hasil polong segar dengan  rata-rata 15,50 t ha-1 dan 15,71 t ha-1 dan hasil biji kering dengan rata-rata 4,58 t ha-1 dan 4,57 t.ha-1 yang stabil dan beradaptasi luas. Galur GSG 1.5 dan BBL 6.1.1 merupakan galur yang mempunyai potensi hasil tinggi untuk polong segar dengan rata-rata 17,16 t ha-1 dan 18,90 t.ha-1 pada lingkungan yang produktif.Kata Kunci: interaksi G x E, kacang Bogor, pemuliaan tanaman, stabilitas hasil, uji adaptasi Abstract The bambara groundnut (Vigna subterranea (L.) Verdcourt) has the potential to become a low-fat food commodity. The development and improvement of this commodity yield can be accomplished through the introduction of superior varieties. The purpose of this study were to investigate the yield stability and adaptation of six potential Bambara groundnut lines, namely GSG 2.1.1, GSG 2.5, GSG 1.5, CCC 1.4.1, PWBG 5.3.1, and BBL 6.1.1. The study was carried out in three different locations with varying altitude, land type, and growing season. A randomized block design with three replications was implemented in the experiment, which was then followed by a combined analysis of variance. Regression analysis was used to determine the stability and adaptation of yield based on Eberhart-Russell and Finlay-Wilkinson. The results revealed that there was an interaction between genotypes and environments on yield of fresh pods weight and yield of dried seeds weight. Lines of GSG 2.5 and CCC 1.4.1 had fresh pod yields with an average of 15.50 t ha-1 and 15.71 t ha-1 and dry seed yields an average of 4.58 t ha-1 and 4.57 t  ha-1 which is stable and wide adaptations. In an ideal environment, the GSG 1.5 and BBL 6.1.1 lines had high yield potential for fresh pods, with an average of 17.16 t ha-1 and 18.90 t ha-1.Keywords:  adaptation test, Bambara groundnut, G x E interaction, plant breeding, yield stability 


1999 ◽  
Vol 4 (2) ◽  
pp. 53
Author(s):  
R. Ahmad ◽  
A. Tanveer ◽  
J. C. Stark ◽  
T. Mustafa

Selection for drought tolerance typically involves evaluating genotypes for either high yield potential or stable performance under varying degrees of water stress. Field Studies were conducted in 1992 and 1993 to assess methods for evaluating genotypes with combined high yield potential and stability, in both years, 12 spring wheat (Triticum aestivum. L.) genotypes were grown under two irrigation levels (well-watered and stressed) imposed between tillering and anthesis with a line-source sprinkler irrigation system. Drought susceptibility index (the ratio of the yield of genotype in drought to the yield of the same genotype in well watered conditions standardized by the mean yield of all genotypes in drought and well watered conditions) and relative yield (yield of an individual genotype under drought divided by the yield of the highest yielding individual genotype in a population under drought) values were used to describe yield stability and yield potential of the 12 spring wheat genotypes. There were year-to-year variations in drought susceptibility index (DSI) and relative yield (RY) values within genotypes and changes in genotypic rankings within years. The DSI values ranged from 0.42 to 1.24 in 1992 and from 0.51 to 1.59 in 1993. The mean RY were 0.79 and 0.86 in 1992 and 1993, respectively. The DSI did not provide a good indication of yield potential as some genotypes has DSI < 1 but RY lower than average under water-stressed conditions. The RY (higher than average) under water stress was a good indicator of yield potential of a genotype per se but gave no indication of yield stability. The plots of DSI vs. RY values were found useful in identifying genotypes with high yield potential and relatively stable yield performance under different moisture regimes.


Sign in / Sign up

Export Citation Format

Share Document