scholarly journals A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2359
Author(s):  
Eleonora Cataldo ◽  
Maddalena Fucile ◽  
Giovan Battista Mattii

Conservative and sustainable soil management in vineyards is an approach of primary importance not only for the yield (tons per hectare) and grapes’ quality (primary and secondary metabolites), but also for the greater preservation of the ecosystem. Compared to sustained-conventional tillage and perpetual applications of fertilizers and phytopharmaceutical, these techniques give a primary role for safeguarding biodiversity, conserving soil fertility, and keeping vegetative–productive balance. The soil and, consequently, the wine production are in fact an intimate ecosystem jeopardized not only by a reckless approach by man (technical input, such as pesticides, fuel, fertilizers, and herbicides, are estimated to be responsible for 24% of anthropogenic greenhouse gases emissions), but also by climate change, as rising summer temperatures and reduced precipitation leads to production declines and water shortages in the soil. In fact, there are several risks associated with unbalanced soil management, such as compaction, pollution, soil erosion, soil organic matter (SOM) depletion, and loss of biodiversity, that lead to a drop in grape quality and quantity. In this context, soil management in viticulture and sustainable strategies assume greater significance to improve the quality of modern viticulture. This review aims to highlight new agronomic techniques capable of enhancing the resilience of the system and contributing to conservation and ecosystem services provision, especially as wine consumers increasingly appreciate environmentally friendly farming practices. In particular, the review aims to focus the positive implications and repercussions as a result of these practices (e.g., compost, vermicompost, biochar, Ascophyllum nodosum, Arbuscular mycorrhizal fungi (AMF), Trichoderma, zeolite, partial root drying, cover cropping, and mulching).

2021 ◽  
Vol 13 (3) ◽  
pp. 1226
Author(s):  
Ana Cruz-Silva ◽  
Andreia Figueiredo ◽  
Mónica Sebastiana

Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.


2003 ◽  
Vol 83 (4) ◽  
pp. 969-976 ◽  
Author(s):  
J. R. Moyer ◽  
M. J. Clapperton ◽  
A. L. Boswall

Experiments were established on irrigated land at Lethbridge, Alberta, to determine the effect of timing and method of alfalfa (Medicago sativa L.) termination on weed abundance, soil moisture and N content, cereal yield and colonization of roots by vesicular arbuscular mycorrhizal (VAM) fungi. Alfalfa growth was terminated using no, minimum, and conventional tillage in either late summer, early fall, or spring. Herbicide was applied or tillage was used to control volunteer alfalfa, dandelion (Taraxacum officinale Weber), stinkweed (Thlaspi arvense L.), and kochia [Kochia scoparia (L.) Schrader] before seeding cereals. Dandelion and volunteer alfalfa density tended to be greatest after no-tillage treatments, and poor in-crop alfalfa control likely reduced cereal yields in no-tillage plots. In contrast, the major in-crop broadleaf weed, redroot pigweed (Amaranthus retroflexus L.), was most dense (7 plants m-2) in tilled plots. Both wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) yields were reduced 9 to 12% after alfalfa termination with no-tillage treatments compared with minimum or conventional tillage. In spring, after seeding, available soil N content averaged 138, 101 and 79 kg ha-1 for conventional-, minimum-and no-tillage plots, respectively; however, fall no-tillage treatments seemed to supply sufficient N for wheat and barley. Soil moisture content tended to be similar after all termination treatments. Wheat and barley responded differently to time and method of termination in terms of seedling root length and colonization by VAM fungi. The percentage of root colonized by VAM fungi was greater on both barley and wheat in no-tillage compared to cultivated treatments. It may be possible to have similar wheat and barley yields after no tillage and tilled alfalfa termination if no-tillage termination is initiated in fall and effective incrop herbicides are used for volunteer alfalfa and dandelion control. Key words: Alfalfa termination, no-tillage, N, vesicular arbuscular mycorrhizal fungi, weed density


2014 ◽  
Vol 153 (6) ◽  
pp. 1084-1096 ◽  
Author(s):  
E. NICOLÁS ◽  
J. F. MAESTRE-VALERO ◽  
J. J. ALARCÓN ◽  
F. PEDRERO ◽  
J. VICENTE-SÁNCHEZ ◽  
...  

SUMMARYIn the present study, carried out in South-eastern Spain, a commercial arbuscular mycorrhizal fungus (AMF;Glomus iranicumvar.tenuihypharumsp.nova) was introduced through drip irrigation to inoculate Crimson grapevines. Their effects on the physiological and nutritional activity were evaluated for 2 years (2011–12). Additionally, during the second year of experimentation, the persistence of mycorrhizae on the grapevine and their effects were innovatively analysed.The AMF satisfactorily colonized the Crimson grapevine roots, improved the plants water status, induced an improvement in the photosynthetic performance that increased the water use efficiency, promoted the uptake of phosphorus (P), potassium (K) and calcium (Ca) and led to a mobilization of starch reserves in the apex in winter, which was possibly responsible for enhancing root development. Moreover, inoculated plants had significantly increased yield and improved quality of grapes, which led to early grape maturation. Overall, the persistent effect of AMF during the second year produced similar positive effects, although to a lesser extent, to those obtained in the inoculated treatment.The results found in the present study show that this AMF application technique can be recommended for sustainable agriculture in arid and semi-arid areas. Moreover, as a result of the competition with the native mycorrhizae, periodic monitoring of the percentage of mycorrhizal colonization and re-inoculation in order to obtain all the positive effects evidenced in the inoculated treatment is recommended.


2018 ◽  
Vol 3 (2) ◽  
pp. 120-134 ◽  
Author(s):  
Methuselah Mang’erere Nyamwange ◽  
◽  
Ezekiel Mugendi Njeru ◽  
Monicah Mucheru-Muna ◽  
Felix Ngetich ◽  
...  

2018 ◽  
Vol 86 (2) ◽  
Author(s):  
Esty Puri UTAMI ◽  
Eny WIDAJATI ◽  
Endah Retno PALUPI ◽  
Nurita TORUAN-MATHIUS

Oil palm is a leading commodity of the plantation sector in Indonesia. Improving the quality of oil palm still be carried out to increase production. Seed technology can be used as an effort to improve the quality of oil palm seeds. The aim of this experiment was to determine the effect of seed enrichment with consortium of three microbes to increase vigor of oil palm seedling in pre nursery stage. The experiment design of this reseach was using completely randomize block design consisted of two factors. The first was seed coating consist of two factors, ie: coated seed and uncoated seed. Second was seed enrichment consist of eight factors, ie: control, enrichment with E. sacchari, abruscular mycorrhizal fungi (AMF), T. asperellum, E. sacchari+ AMF, E. sacchari+ T. asperellum, AMF + T. asperellum, E. sacchari+ AMF + T. asperellum. The result showed that enrichment with consortium of three microbes could increase vigor of oil palm seedling based on seedling germination, rate of germination, palm height, and numbers of survival seedling.[Keywords:biological agent, compatibility, diazotroph] Abstrak *) Penulis korespondensi: [email protected] Kelapa sawit adalah komoditas unggulan sektor perkebunan di Indonesia. Peningkatan mutu kelapa sawit terus dilakukan agar mening-katkan produksinya. Teknologi benih dapat digu-nakan sebagai salah satu upaya peningkatan mutu benih kelapa sawit. Penelitian ini bertujuan untuk menetapkan pengaruh pengayaan konsorsium tiga mikroba, E. sacchari,T. asperellumdan cendawan mikoriza arbuskular (CMA) dan pelapisan kecambah terhadap peningkatan vigor bibit kelapa sawit di pre nursery. Percobaan dirancang dengan rancangan acak kelompok dengan dua faktor, yaitu pelapisan dan pengayaan. Pelapisan terdiri dari dua taraf, yaitu dengan pelapisan dan tanpa pelapisan. Pengayaan terdiri dari 8 taraf, yaitu kontrol, pengayaan dengan E. sacchari, CMA, T. asperellum, E. sacchari+ CMA, E. sacchari + T. asperellum,CMA + T.asperellum,E. sacchari+ CMA + T. asperellum. Hasil penelitian menunjukkan bahwa pengayaan dengan konsor-sium tiga mikroba dapat meningkatkan vigor bibit kelapa sawit berdasarkan parameter daya tumbuh, kecepatan tumbuh, tinggi bibit, dan jumlah bibit yang hidup.  [Kata kunci:    agen hayati,    diazotrop, kompa-tibilitas]


Sign in / Sign up

Export Citation Format

Share Document