Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine

2014 ◽  
Vol 153 (6) ◽  
pp. 1084-1096 ◽  
Author(s):  
E. NICOLÁS ◽  
J. F. MAESTRE-VALERO ◽  
J. J. ALARCÓN ◽  
F. PEDRERO ◽  
J. VICENTE-SÁNCHEZ ◽  
...  

SUMMARYIn the present study, carried out in South-eastern Spain, a commercial arbuscular mycorrhizal fungus (AMF;Glomus iranicumvar.tenuihypharumsp.nova) was introduced through drip irrigation to inoculate Crimson grapevines. Their effects on the physiological and nutritional activity were evaluated for 2 years (2011–12). Additionally, during the second year of experimentation, the persistence of mycorrhizae on the grapevine and their effects were innovatively analysed.The AMF satisfactorily colonized the Crimson grapevine roots, improved the plants water status, induced an improvement in the photosynthetic performance that increased the water use efficiency, promoted the uptake of phosphorus (P), potassium (K) and calcium (Ca) and led to a mobilization of starch reserves in the apex in winter, which was possibly responsible for enhancing root development. Moreover, inoculated plants had significantly increased yield and improved quality of grapes, which led to early grape maturation. Overall, the persistent effect of AMF during the second year produced similar positive effects, although to a lesser extent, to those obtained in the inoculated treatment.The results found in the present study show that this AMF application technique can be recommended for sustainable agriculture in arid and semi-arid areas. Moreover, as a result of the competition with the native mycorrhizae, periodic monitoring of the percentage of mycorrhizal colonization and re-inoculation in order to obtain all the positive effects evidenced in the inoculated treatment is recommended.

2021 ◽  
Vol 2 (3) ◽  
pp. 1-6
Author(s):  
G. Nowo Nekou ◽  
A.-M. Sontsa-Donhoung ◽  
. Hawaou ◽  
M. Bahdjolbe ◽  
R. Tobolbaï ◽  
...  

This work aims to assess the leek-arbuscular fungus symbiosis response to the effect of cutting and light exposure on the one hand, and the impact of seedling density on this symbiosis on the other hand. Allium Porrum was grown in a container in two different trials. Four species of arbuscular mycorrhizal fungi, Glomus hoi, Scutellospora gregaria, Rhizophagus intraradices and Gigaspora margarita were used to constitute the mycorrhizal inoculum. After 150 days of growth and inoculation, a series of cuts were made on the aerial part (0% = zero cut, 50% = half cut, 100% = whole cut). Plants that had undergone these treatments were placed in shade and sun for 30 days. The leek density per bag was varied by the order of 1, 2, 3 and 4 plant (s) by the pocket density test. Results showed that for 0% of cut in the shade, the vesicle occurrence decreases from 83.33% to 52.22%, and from 90% to 25.5% for 50% of cut in the shade. On the other hand, there is a significant increase in intra-root spores for a complete cut compared to other levels of cuts. For extra-root sporulation, under light, cuts have a negative and weak effect (from -11 to -3%) while in the absence of light, cuts have significant positive effects (from +16 to +61%). Regarding seedling density, the best root colonization (90%) and biomass production (14 g) are obtained with three plants per pot, but it is rather with a density of two plants per pot that extra-root sporulation is higher (153 spores/g). Variation in light, cut level and density significantly affects the development of mycorrhizal fungi.


2004 ◽  
Vol 14 (1) ◽  
pp. 39-48 ◽  
Author(s):  
C.F. Scagel

We assessed whether addition of arbuscular mycorrhizal fungus (AMF) inoculum or rhizosphere organisms from AMF inoculum alters aspects of flowering, corm production, or corm quality of harlequin flower (Sparaxis tricolor) for two growth cycles after inoculation. Using pasteurized and nonpasteurized growth medium, plants were inoculated with either inoculum of the AMF, Glomus intraradices, or washings of the inoculum containing rhizobacteria. Shoots of plants inoculated with AMF emerged 2 days earlier than shoots on noninoculated plants or plants inoculated with inoculum washings. Flowers on AMF-inoculated plants opened 7-8 days earlier and plants produced more flowers per plant and per inflorescence than noninoculated plants. AMF-inoculated plants partitioned a higher proportion of biomass to cormel production than to daughter corms and had higher concentration and contents of zinc, sulfur, nitrogen, amino acids, and carbohydrates than corms from noninoculated plants. The rhizosphere organisms associated with the AMF inoculum influenced several measures of plant development, growth, and corm production suggesting that there are organisms associated with our AMF inoculum that have beneficial effects on the growth and productivity of harlequin flower. While inoculation with AMF can promote shoot emergence, leaf production, and flower production of harlequin flower, inoculation also alters aspects of biomass partitioning and corm composition that play an important role in the production of this crop for corms and cormels.


2020 ◽  
Vol 6 (4) ◽  
pp. 233
Author(s):  
Anna M. Hallasgo ◽  
Bernhard Spangl ◽  
Siegrid Steinkellner ◽  
Karin Hage-Ahmed

Some members of the root endophytic Serendipitaceae were observed to frequently coexist with arbuscular mycorrhizal fungi (AMF), but their interactions and potential synergistic effects in plants have not yet been well elucidated. Here, we inoculated three-week-old tomato seedlings with Serendipita indica or Serendipita williamsii alone or in combination with the arbuscular mycorrhizal fungus Funneliformis mosseae and cultivated the plants in a greenhouse until the late vegetative stage. Our data show that the simultaneous presence of Serendipita spp. did not affect root colonization by AMF, proving the feasibility of their combination for future agronomic uses. The photosynthetic performance was enhanced in AM tomato plants, although growth remained unresponsive following single or dual inoculation with Serendipita spp. and AMF. With regard to nutrient status under dual inoculation, AMF-induced phosphorus increases remained unaffected, but nitrogen and carbon dynamics were highly altered. Specifically, the application of S. williamsii to mycorrhizal tomato plants significantly enhanced nitrogen concentration in the shoots, but this effect was also compensated with a carbon cost. Our findings indicate that S. williamsii performs differently from S. indica when co-inoculated with AMF, and this suggests an unknown mechanism that needs more detailed investigation.


2003 ◽  
Vol 13 (1) ◽  
pp. 62-66 ◽  
Author(s):  
C.F. Scagel ◽  
K. Reddy ◽  
J.M. Armstrong

In a commercial nursery propagation system for hick's yew (Taxu×media `Hicksii'), we assessed whether or not the addition of inoculum of the vesicular-arbuscular mycorrhizal fungus (VAMF) Glomus intraradices into the rooting substrate during cutting propagation increased rooting, and how the quantity of inoculum influenced rooting. At 15 and 22 weeks (108 and 156 d) after cuttings were treated with root hormones and stuck, root initiation was higher on cuttings stuck in the rooting substrate containing VAMF inoculum. Increasing the quantity of inoculum in the rooting substrate increased root growth during the early stages of rooting. However the highest level of inoculum tested increased adventitious root initiation without increased root growth. Our results indicate that if VAMF inoculum is used during propagation from cuttings, there are optimal levels required to alter the initiation and growth of roots. For hick's yew, 1:100 or 2:100 (by volume) rates of G. intraradices in the rooting substrate increased the number of primary roots and growth of adventitious roots on cuttings above that achieved by using rooting hormone alone.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabaiporn Nacoon ◽  
Sanun Jogloy ◽  
Nuntavun Riddech ◽  
Wiyada Mongkolthanaruk ◽  
Jindarat Ekprasert ◽  
...  

AbstractIn this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.


1995 ◽  
Vol 75 (1) ◽  
pp. 269-275 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

The relative susceptibility of selected barley cultivars produced in western Canada to vesicular-arbuscular mycorrhizal (VAM) fungi under field and greenhouse conditions was evaluated in this study. Cultivars tested under field conditions at the University of Alberta and Lacombe research stations showed no significant differences in VAM colonization of barley roots; colonization was light. Greenhouse trials at the University of Alberta with eight cultivars inoculated with individual mycorrhizal species illustrated significant differences among the barley cultivars in their reactions to Glomus dimorphicum, G. intraradices, and G. mosseae. Distinct differences were observed in the ability of each Glomus species to colonize the barley cultivars. The VAM fungi increased growth and yield in some cultivars, depending on the Glomus species. This study indicates that a degree of host-specificity exists in VAM fungi and that the host-mycorrhizal fungus genotypes may influence the effectiveness of the symbiosis. Key words: Barley, cultivars, susceptibility, VA mycorrhizal fungi


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 41 ◽  
Author(s):  
Narges Moradtalab ◽  
Roghieh Hajiboland ◽  
Nasser Aliasgharzad ◽  
Tobias E. Hartmann ◽  
Günter Neumann

Silicon (Si) is a beneficial element that alleviates the effects of stress factors including drought (D). Strawberry is a Si-accumulator species sensitive to D; however, the function of Si in this species is obscure. This study was conducted to examine the effect of Si and inoculation with an arbuscular mycorrhizal fungus (AMF) on physiological and biochemical responses of strawberry plants under D. Plants were grown for six weeks in perlite and irrigated with a nutrient solution. The effect of Si (3 mmol L‒1), AMF (Rhizophagus clarus) and D (mild and severe D) was studied on growth, water relations, mycorrhization, antioxidative defense, osmolytes concentration, and micronutrients status. Si and AMF significantly enhanced plant biomass production by increasing photosynthesis rate, water content and use efficiency, antioxidant enzyme defense, and the nutritional status of particularly Zn. In contrast to the roots, osmotic adjustment did not contribute to the increase of leaf water content suggesting a different strategy of both Si and AMF for improving water status in the leaves and roots. Our results demonstrated a synergistic effect of AMF and Si on improving the growth of strawberry not only under D but also under control conditions.


Sign in / Sign up

Export Citation Format

Share Document