scholarly journals Hybrids Development between Greek Salvia Species and Their Drought Resistance Evaluation along with Salvia fruticosa, under Attapulgite-Amended Substrate

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2401
Author(s):  
Maria Papafotiou ◽  
Aikaterini N. Martini ◽  
Eleonora Papanikolaou ◽  
Eleftherios G. Stylias ◽  
Anastasios Kalantzis

Aiming to obtain Salvia hybrids with ornamental value and high drought resistance, for xeriscaping, crossbreeding was made with Greek Salvia species. S. fruticosa and S. officinalis when used as seed parent were successfully crossed with S. pomifera ssp. pomifera, S. ringens and S. tomentosa, while when used as pollen parent it only succeeded between S. fruticosa and S. tomentosa. The growth of S. fruticosa and the four hybrids, S. officinalis × S. pomifera, S. officinalis × S. tomentosa, S. officinalis × S. ringens and S. fruticosa × S. ringens, selected for their ornamental traits, was evaluated under limited irrigation and modification of the substrate with attapulgite clay. The hybrids S. officinalis × S. ringens and S. officinalis × S. tomentosa developed a compact plant shape and most lateral shoots, desirable characteristics for potted plants and xeriscaping. All hybrids, especially S. officinalis × S. pomifera and S. officinalis × S. tomentosa, survived water stress better than S. fruticosa. Modification of the substrate with attapulgite, under limited irrigation, caused a decrease in the above ground/root biomass ratio in some hybrids and in S. fruticosa increased the dry weight of the root indicating increased drought resistance.

2019 ◽  
Vol 46 (No. 2) ◽  
pp. 98-106 ◽  
Author(s):  
Filippos Bantis ◽  
Kalliopi Radoglou

The effect of light-emitting diodes (LED) with broad radiation spectra on developmental, physiological, and phytochemical characteristics of Greek sage (Salvia fruticosa L.) seedlings was assessed. Fluorescent (FL – control) tubes and four LED lights [AP67 (moderate blue, red and far-red), L20AP67 (moderate blue, red and far-red, high green), AP673L (moderate blue, high red) and NS1 (high blue and green, low red, high red : far-red, 1% ultraviolet)] were used in a growth chamber. Seedlings grown under FL, L20AP67 and AP673L exhibited the best morphological and developmental characteristics. FL led to inferior root biomass formation compared to all LEDs. AP67 promoted greater root-to-shoot dry weight ratio and dry-to-fresh overground and root weight ratios, but induced the least morphological and developmental characteristics. NS1 performed well regarding the root biomass production. Total phenolic content and the root growth capacity were not significantly affected. The present study demonstrates that L20AP67 and AP673L LEDs performed equally to FL light regarding the developmental characteristics. AP67 and NS1 may have the potential to be used for compact seedling production.


1968 ◽  
Vol 8 (2) ◽  
pp. 288-306 ◽  
Author(s):  
G. C. Hufbauer

In the late nineteenth and early twentieth centuries, several Punjab Settlement Officers attempted to estimate food consumption rates. These estimates, based on direct observation and ad hoc guesses, were made partly out of academic curiosity, but more urgently, as an aid in establishing the land revenue (i.e., tax) rates. The pre-1926 estimates are summarized in Table I, expressed in pounds of wheat and other foodgrain consumption per person per year1. Broadly speaking, the later, more systemtic observers (e.g., Sir Ganga Ram and C. B. Barry), found lower consumption levels than the earlier observers. It was generally accepted that the rural populace ate better than urban dwellers. Despite the ingenuity of the early Settlement Officers, their compiled estimates suffer from all the difficulties of haphazard small sample observation. Given the revenue purpose of the estimates, they may be biased towards the able-bodied, economically active, population. Further, the very early estimates may have confused dry weight with cooked weight, including water.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaoyi Guo ◽  
Wei Zhou ◽  
Qun Lu ◽  
Aiyan Du ◽  
Yinghua Cai ◽  
...  

Dry weight is the normal weight of hemodialysis patients after hemodialysis. If the amount of water in diabetes is too much (during hemodialysis), the patient will experience hypotension and shock symptoms. Therefore, the correct assessment of the patient’s dry weight is clinically important. These methods all rely on professional instruments and technicians, which are time-consuming and labor-intensive. To avoid this limitation, we hope to use machine learning methods on patients. This study collected demographic and anthropometric data of 476 hemodialysis patients, including age, gender, blood pressure (BP), body mass index (BMI), years of dialysis (YD), and heart rate (HR). We propose a Sparse Laplacian regularized Random Vector Functional Link (SLapRVFL) neural network model on the basis of predecessors. When we evaluate the prediction performance of the model, we fully compare SLapRVFL with the Body Composition Monitor (BCM) instrument and other models. The Root Mean Square Error (RMSE) of SLapRVFL is 1.3136, which is better than other methods. The SLapRVFL neural network model could be a viable alternative of dry weight assessment.


2000 ◽  
Vol 51 (6) ◽  
pp. 701 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

We studied the adaptation of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (L. luteus) to waterlogging because yellow lupin may have potential as a new legume crop for coarse-textured, acidic, waterlogging-prone areas in Western Australia. In a controlled environment, plants were waterlogged for 14 days at 28 or 56 days after sowing (DAS). Plants were more sensitive when waterlogged from 56 to 70 DAS than from 28 to 42 DAS, root growth was more sensitive than shoot growth, and leaf expansion was more sensitive than leaf dry weight accumulation. Waterlogging reduced the growth of narrow-leafed lupin (60–81%) more than that of yellow lupin (25–56%) and the response was more pronounced 2 weeks after waterlogging ceased than at the end of waterlogging. Waterlogging arrested net root growth in narrow-leafed lupin but not in yellow lupin, so that after 2 weeks of recovery the root dry weight of yellow lupin was the same as that of the control plants but in narrow-leafed lupin it was 62% less than the corresponding control plants. Both species produced equal amounts of hypocotyl root when waterlogged from 28 to 42 DAS but yellow lupin produced much greater amounts than narrow-leafed lupin when waterlogged from 56 to 70 DAS.


2012 ◽  
Vol 92 (2) ◽  
pp. 267-269 ◽  
Author(s):  
Cheryl R. Hampson ◽  
Paul Randall ◽  
Peter Sholberg

Hampson, C. R., Randall, P. and Sholberg, P. 2012. Short communication:Tolerance of Vineland apple rootstocks to waterlogging and Phytophthora infestation. Can. J. Plant Sci. 92: 267–269. The Vineland (V) apple (Malus) rootstock series has displayed a range of dwarfing potential and fire blight resistance in research test plots. Knowledge of their resistance to crown and root rot, incited by Phytophthora spp., is desirable before recommending them for on-farm testing, but information on this subject is lacking. Therefore, we tested the response of V.1, V.2, V.3 and V.4 clonal rootstocks to Phytophthora (P. cactorum and P. cryptogea) and waterlogging (0, 24 or 48 h per week for 4 mo) in a factorial greenhouse experiment on potted plants, using M.9 (moderately resistant to Phytophthora) and MM.106 (susceptible) as standards for comparison. Root fresh weight was reduced equally by both pathogens relative to uninoculated controls; rootstocks differed in their response to flooding but not to pathogen treatment. Shoot fresh weight was depressed by flooding in a rootstock- and pathogen-dependent manner. In general, all four V rootstocks had better root and shoot growth than MM.106 in the flooding treatments, and all grew as well as, or better than M.9.


2005 ◽  
Vol 45 (1) ◽  
pp. 59 ◽  
Author(s):  
Zheng Gang Guo ◽  
Hui Xia Liu ◽  
Suo Min Wang ◽  
Fu Ping Tian ◽  
Guo-Dong Cheng

Forage yield and density are common selection criteria for assessing the suitability of lucerne varieties in high rainfall conditions and under irrigation. However, selection criteria for assessing the suitability of lucerne varieties is not well defined in dryland farming systems. This study combines forage yield, plant density, root biomass and proline content in the plant leaf to compare the suitability of 1 local and 8 introduced lucerne (Medicago sativa) varieties over 3 years in the dry environment of west China. The results of this study indicated that the above measurements significantly differed among the 9 lucerne varieties, and also showed that suitability of lucerne varieties varied based on different indicators. Ameristand 201 and Algonquin performed well in terms of forage yield. Ameristand 201 and Sandili were well-adapted varieties based on root biomass and Ameristand 201 was the first selected variety in terms of drought resistance. Combining initial establishment density and its decline over years indicated that Sandili maintained good persistence. A cluster analysis of 9 lucerne varieties indicated that Ameristand 201 was very suitable for sowing in the dry Loess Plateau, a high water-erosion region in west China.


1992 ◽  
Vol 22 (5) ◽  
pp. 740-749 ◽  
Author(s):  
R. van den Driessche

Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), lodgepole pine (Pinuscontorta Dougl.), and white spruce (Piceaglauca (Moench) Voss) seedlings, each represented by two seed lots, were grown in Styroblock containers in a greenhouse and plastic shelter house from February 1989 to January 1990. The seedlings were exposed to two nitrogen (N) treatments and three potassium (K) treatments arranged factorially within three drought treatments. After winter storage, seedlings from a complete set of treatments were planted into hygric, mesic, and xeric sand beds during 12–14 March. Increasing nursery drought stress increased survival of Douglas-fir and lodgepole pine after planting, and high N treatment level increased survival of lodgepole pine and white spruce. Under xeric conditions, combined nursery drought and high N treatments increased survival of lodgepole pine by 33%, indicating the importance of nursery cultural regime for stock quality. Increase in nursery drought decreased seedling size relatively little, but increase in N increased seedling size one season after planting. A positive relationship between shoot/root ratio and survival in lodgepole pine and white spruce indicated that increase in N increased both shoot growth and drought resistance over the N range investigated. Only Douglas-fir showed an interaction between drought and N treatment and a small response in both survival and dry weight to K. Root growth capacity, measured at the time of planting, showed an approximate doubling in all species due to high N treatment, and was also increased in white spruce by drought stress. Survival and root growth capacity were poorly correlated, but dry-weight growth in sand beds was well correlated with root growth capacity. Shoot dry weight and percent N in shoots measured after nursery growth were correlated with root growth capacity. Manipulation of root growth capacity by changing nursery treatment was apparently possible without altering resistance to drought stress after planting.


2007 ◽  
Vol 19 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Balaji B. Maruthi Sridhar ◽  
Fengxiang X. Han ◽  
Susan V. Diehl ◽  
David L. Monts ◽  
Yi Su

The objectives of this study were to identify the structural changes caused by Zn and Cd accumulation in shoots and roots of barley (Hordeum vulgare) plants; and to correlate metal accumulation with anatomical, physiological and morphological changes. Potted plants were exposed to metal treatments of Zn and Cd for 19 and 16 d respectively. Leaves, stems and roots were harvested to identify structural changes and analyze metal accumulation. Barley effectively accumulated Zn (up to 11283 mg kg-1) and Cd (up to 584 mg kg-1) in the shoots. Microscopic structural changes, such as a decrease in intercellular spaces, breakdown of vascular bundles, and shrinkage of palisade and epidermal cells, occurred in leaves, stems and roots of plants treated with high concentrations of Zn. Zinc accumulation also resulted in a significant decrease in water content, fresh weight, dry weight and plant height. Cadmium only caused structural changes in roots at the higher concentrations. Barley plants were able to accumulate significant amounts of Zn and Cd without exhibiting symptoms of phytotoxicity when the metal concentrations were relatively low.


2001 ◽  
Vol 49 (2) ◽  
pp. 141-149 ◽  
Author(s):  
N. Narula ◽  
V. Kumar ◽  
R. K. Behl

A field experiment was carried out to investigate the establishment of phosphate-dissolving strains of Azotobacter chroococcum, including soil isolates (wild type) and their mutants, in the rhizosphere and their effect on the growth attributes and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Four fertilizer doses were applied: 90 kg N ha—1, 90 kg N + 60 kg P2O5ha—1, 120 kg N ha—1and 120 kg N + 60 kg P2O5ha—1, besides a control plot without fertilizers or bioinoculants. Phosphate-solubilizing and phytohormone-producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected following the enrichment method. On an overall basis the mutant strains performed better than the soil isolates for in vitro phosphate solubilization (11–14%) and growth hormone production (11.35%). Seed inoculation of wheat varieties with phosphate-solubilizing and phytohormone-producing A. chroococcum showed a better response over the control. Mutant strains of A. chroococcum showed a higher increase in grain (15.30%) and straw (15.10%) yield over the control and better survival (12–14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M15 performed better in all three varieties in terms of increase in grain yield (20.8%) and root biomass (20.6%) over the control.


Sign in / Sign up

Export Citation Format

Share Document