scholarly journals Genome-Wide In Silico Analysis and Expression Profiling of Phosphoenolpyruvate Carboxylase Genes in Loquat, Apple, Peach, Strawberry and Pear

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Cao Zhi ◽  
Muhammad Moaaz Ali ◽  
Shariq Mahmood Alam ◽  
Shaista Gull ◽  
Sajid Ali ◽  
...  

Phosphoenolpyruvate carboxylase (PEPC) genes have multiple potential roles in plant metabolism such as regulation and accumulation of organic acids in fruits, movement of guard cells and stress tolerance, etc. However, the systematic identification and characterization of PEPC genes in Rosaceae species i.e., loquat, apple, peach, strawberry, and pear are yet to be performed. In present study, 27 putative PEPC genes (loquat 4, apple 6, peach 3, strawberry 9, and pear 5) were identified. To further investigate the role of those PEPC genes, comprehensive bioinformatics and expression analysis were performed. In bioinformatic analysis, the physiochemical properties, conserved domains, gene structure, conserved motif, phylogenetic and syntenic analysis of PEPC genes were performed. The result revealed that the PEPcase superfamily domain was conserved in all examined PEPC proteins. Most of the PEPC proteins were predicted to be localized in cytonuclear. Genomic structural and motif analysis showed that the exon and motif number of each PEPC gene ranged dramatically, from 8 to 20, and 7 to 10, respectively. Syntenic analysis indicated that the segmental or whole-genome duplication played a vital role in extension of PEPC gene family in Rosacea species. The Ka and Ks values of duplicated genes depicted that PEPC genes have undergone a strong purifying selection. Furthermore, the expression analysis of PEPC genes in root, mature leaf, stem, full-bloom flower, and ripened fruit of loquat, apple, peach, strawberry, and pear was performed. Some genes were differentially expressed in aforementioned plant tissues, signifying their role in plant metabolism. This study provides the first genome-wide identification, characterization, and expression profiling of PEPC gene family in Rosaceae species, and provides the foundation for further functional analysis.

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 441
Author(s):  
Muhammad Moaaz Ali ◽  
Shariq Mahmood Alam ◽  
Raheel Anwar ◽  
Sajid Ali ◽  
Meng Shi ◽  
...  

Aluminum-activated malate transporters (ALMTs) have multiple potential roles in plant metabolism such as regulation of organic acids in fruits, movement of guard cells and inducing tolerance against aluminum stress. However, the systematic characterization of ALMT genes in loquat is yet to be performed. In the current study, 24 putative ALMT genes were identified in the genome of Eriobotrya japonica Lindl. To further investigate the role of those ALMT genes, comprehensive bioinformatics and expression analysis were performed. In bioinformatics analysis, the physiochemical properties, conserved domains, gene structure, conserved motif, phylogenetic and syntenic analysis of EjALMT genes were conducted. The result revealed that the ALMT superfamily domain was conserved in all EjALMT proteins. EjALMT proteins were predicted to be localized in the plasma membrane. Genomic structural and motif analysis showed that the exon and motif number of each EjALMT gene ranged dramatically, from 5 to 7, and 6 to 10, respectively. Syntenic analysis indicated that the segmental or whole-genome duplication played a vital role in extension of the EjALMT gene family. The Ka and Ks values of duplicated genes depicted that EjALMT genes have undergone a strong purifying selection. Furthermore, the expression analysis of EjALMT genes was performed in the root, mature leaf, stem, full-bloom flower and ripened fruit of loquat. Some genes were expressed differentially in examined loquat tissues, signifying their differential role in plant growth and development. This study provides the first genome-wide identification, characterization, and relative expression of the ALMT gene family in loquat and provides the foundation for further functional analysis.


2021 ◽  
Author(s):  
Yuan Yuan ◽  
Xiping Yang ◽  
Mengfang Feng ◽  
Hongyan Ding ◽  
Khan Muhammad Tahir ◽  
...  

Abstract Background: Sugarcane (Saccharum) is the most important sugar crop in the world. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. Results: A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genome and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which MYB43, MYB53, MYB65, MYB78, and MYB99 were validated by qPCR. Allelic expression dominance in the stem was more significant than that in the leaf, implying the differential expression of alleles may be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. Conclusions: A Genome-wide expression analysis demonstrated that SsMYB genes were involved in stem development and stress response. This study largely contributed to understanding the extent to which MYB transcription factors investigate regulatory mechanisms and functional divergence in sugarcane.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Wenbo Chai ◽  
Weina Si ◽  
Wei Ji ◽  
Qianqian Qin ◽  
Manli Zhao ◽  
...  

HD-Zip proteins represent the major transcription factors in higher plants, playing essential roles in plant development and stress responses. Foxtail millet is a crop to investigate the systems biology of millet and biofuel grasses and the HD-Zip gene family has not been studied in foxtail millet. For further investigation of the expression profile of the HD-Zip gene family in foxtail millet, a comprehensive genome-wide expression analysis was conducted in this study. We found 47 protein-encoding genes in foxtail millet using BLAST search tools; the putative proteins were classified into four subfamilies, namely, subfamilies I, II, III, and IV. Gene structure and motif analysis indicate that the genes in one subfamily were conserved. Promotor analysis showed that HD-Zip gene was involved in abiotic stress. Duplication analysis revealed that 8 (~17%) hdz genes were tandemly duplicated and 28 (58%) were segmentally duplicated; purifying duplication plays important roles in gene expansion. Microsynteny analysis revealed the maximum relationship in foxtail millet-sorghum and foxtail millet-rice. Expression profiling upon the abiotic stresses of drought and high salinity and the biotic stress of ABA revealed that some genes regulated responses to drought and salinity stresses via an ABA-dependent process, especiallysihdz29andsihdz45.Our study provides new insight into evolutionary and functional analyses of HD-Zip genes involved in environmental stress responses in foxtail millet.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1661
Author(s):  
Hongsheng Zhou ◽  
Wen Huang ◽  
Shufen Luo ◽  
Huali Hu ◽  
Yingtong Zhang ◽  
...  

Vacuolar H+-ATPases (V-ATPase) are multi-subunit complexes that function as ATP hydrolysis-driven proton pumps. They play pivotal roles in physiological processes, such as development, metabolism, stress, and growth. However, there have been very few studies on the characterisation of V-ATPase (VHA) genes in Rosaceae species. Therefore, in the present study, we performed a genome-wide analysis and identified VHA gene family members in five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume). A total of 159 VHA genes were identified, and were classified into 13 subfamilies according to the phylogenetic analysis. The structure of VHA proteins revealed high similarity among different VHA genes within the same subgroup. Gene duplication event analysis revealed that whole-genome duplications represented the major pathway for expansion of the Pyrus bretschneideri VHA genes (PbrVHA genes). The tissue-specific expression analysis of the pear showed that 36 PbrVHA genes were expressed in major tissues. Seven PbrVHA genes were significantly downregulated when the pollen tube growth stopped. Moreover, many PbrVHA genes were differentially expressed during fruit development and storage, suggesting that VHA genes play specific roles in development and senescence. The present study provides fundamental information for further elucidating the potential roles of VHA genes during development and senescence.


2018 ◽  
Vol 44 (2) ◽  
pp. 197
Author(s):  
Li ZHANG ◽  
Hong-Ju JIAN ◽  
Bo YANG ◽  
Ao-Xiang ZHANG ◽  
Chao ZHANG ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


Sign in / Sign up

Export Citation Format

Share Document