scholarly journals Antioxidant Capacity and UPLC-PDA ESI-MS Phenolic Profile of Stevia rebaudiana Dry Powder Extracts Obtained by Ultrasound Assisted Extraction

Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 170 ◽  
Author(s):  
Ana Covarrubias-Cárdenas ◽  
José Martínez-Castillo ◽  
Nelly Medina-Torres ◽  
Teresa Ayora-Talavera ◽  
Hugo Espinosa-Andrews ◽  
...  

Stevia leaves, which are commonly used as a natural sweetener in food products, have increased in importance for antioxidant delivery due to their high content of phenolic compounds. In this study, the influence of the drying process on stevia leaves, with regards to phenolic content and antioxidant activity during drying kinetics 40 °C for 7 h, was studied. The effect of solvent concentration and extraction time using a 32 factorial design on total phenol content (TPC), and on antioxidant activity of extracts obtained from dried stevia leaves, by ultrasound assisted extraction (UAE) as alternative method was evaluated. Steviol glycosides contents were also evaluated by a conventional and UAE method. Phenols identification, quantification and purification were performed by Ultra Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UPLC-ESI-MS), Ultra Performance Liquid Chromatography-Photodiode Array (UPLC-PDA) and advanced automated flash purification, respectively. Drying time affected the moisture content of stevia leaves. A constant weight was reached after six hours of drying, and higher antioxidant activity was observed, while the highest TPC was obtained after seven hours of drying. The highest TPC (91.57 ± 8.8 mg GAE/g dw) and antioxidant activity (603.24 ± 3.5 μmol TE/g dw) in UAE method was obtained when ethanol 50% at 5 min was used. Steviol glycosides extracted by UAE were recorded with a content of 93.18 ± 1.36 mg/g dw and 98.97 ± 1.75 mg/g dw for stevioside and rebaudioside A respectively. Six phenolic compounds including four phenolic acids and two flavonoids were identified and quantified by UPLC-PDA, and confirmed by ESI-MS reporting its fragmentation pattern. Diosmin and chlorogenic acid were the most abundant compounds with values of 2032.36 μg/mL and 434.95 μg/mL respectively. As a novelty we found that the antioxidant activity evaluated in partially purified fractions suggested that biological activity might be attributed to the synergistic effect of the six phenols present in the stevia leaves extract. In addition to its sweeting properties, stevia leaves constitute a potential source of polyphenolic compounds, with antioxidant activity that could be used as a food additive.

2015 ◽  
Vol 29 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Jana Šic Žlabur ◽  
Sandra Voća ◽  
Nadica Dobričević ◽  
Mladen Brnčić ◽  
Filip Dujmić ◽  
...  

Abstract The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1120
Author(s):  
María del Carmen Razola-Diaz ◽  
Eduardo Jesús Guerra-Hernández ◽  
Celia Rodríguez-Pérez ◽  
Ana María Gómez-Caravaca ◽  
Belén García-Villanova ◽  
...  

Orange peel is the main by-product from orange juice industry. It is a known source of bioactive compounds, mostly phenolic compounds, and it has been widely studied for its healthy activities. Thus, this research focuses on the establishment of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode. For this purpose, a Box–Behnken design of 27 experiments was carried out with four independent factors—ratio ethanol/water (v/v), time (min), amplitude (%), and pulse (%). Quantitative analyses of phenolic compounds were performed and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology (RSM). The extracts obtained in the established conditions were analyzed by High Performance Liquid Chromatography (HPLC) coupled to mass spectrometer detector and 74 polar compounds were identified. The highest phenolic content and antioxidant activity were obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W), and pulse 100%. The established method allows an increment of phenolics recovery up to 60% higher than a conventional extraction. Moreover, the effect of drying on phenolic content was also evaluated.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 49
Author(s):  
María del Carmen Razola-Díaz ◽  
Eduardo Jesús Guerra-Hernández ◽  
Celia Rodríguez-Pérez ◽  
Ana María Gómez-Caravaca ◽  
Belén García-Villanova ◽  
...  

Orange peel (OP) is the main by-product from orange juice industry. OP is a known source of bioactive compounds and is widely studied for its antioxidant, anti-inflammatory, anti-cancer, anti-rheumatic, anti-diabetic and cardioprotective activities. Thus, this research focuses on the establishments of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode; objective framed in the European SHEALTHY (non-thermal physical technologies to preserve healthiness of fresh and minimally processed fruit and vegetables) project. For this purpose, a Box Behnken design of 27 experiments was carried out with 4 independent factors (ratio ethanol/water, time (min), amplitude (%) and pulse (%)). Quantitative analyses of total phenolic compounds (TPC) were performed by Folin-Ciocalteu method and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology. The optimal extracts were characterized by HPLC coupled to mass spectrometer detectors. The highest phenolic content and antioxidant activity was obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W) and pulse 100%. The established method allows the extraction of 30.42 mg of gallic acid equivalents/g dry weight of total phenolic compounds from OP; this value suppose an increment up to 60% higher than conventional extraction.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Soumaya Hasni ◽  
Ghayth Rigane ◽  
Hanene Ghazghazi ◽  
Hajer Riguene ◽  
Amir Bouallegue ◽  
...  

Eucalyptus marginata L. has a significant value in traditional medicine and recently has been shown to possess many pharmacological properties in vitro. The main goal of the present study was to optimize the extraction parameters of phenolic compounds from Eucalyptus marginata L. leaves using the extraction technique assisted by ultrasound in comparison with maceration using response surface methodology as a predicted tool. Therefore, total phenolic and flavonoid contents have been optimized, taking into account four variables: extraction time, temperature, liquid-to-solid ratio, and ethanol concentration. The optimum ultrasound-assisted extraction method for total phenolic and total flavonoid contents was obtained by ensuring the following parameters: t = 49.9 min, T = 74.9°C, liquid-to-solid ratio = 39.5 ml/g, and ethanol = 58.48%. The optimum extract has been subjected to LC-ESI-MS analysis. This technique allowed us to identify ten phenolic compounds: four phenolic acids mainly gallic acid (27.77 ± 0.06 µg/g DW) and protocatechuic acid (37.66 ± 0.04 µg/g DW) and six flavonoid compounds such as quercetrin (150.78 ± 0.02 µg/g DW) and hyperoside (39.19 ± 0.03 µg/g DW). These green and efficient procedures should be a promising option to guide industrial design for the production of phenolic-rich plant extracts.


2013 ◽  
Vol 20 (5) ◽  
pp. 1149-1154 ◽  
Author(s):  
Diana B. Muñiz-Márquez ◽  
Guillermo C. Martínez-Ávila ◽  
Jorge E. Wong-Paz ◽  
Ruth Belmares-Cerda ◽  
Raúl Rodríguez-Herrera ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1153
Author(s):  
Xi Chen ◽  
Xinyue Li ◽  
Xiangwei Zhu ◽  
Guozhen Wang ◽  
Kun Zhuang ◽  
...  

Jizi439, a newly developed black wheat breeding line, was reported to effectively regulate blood glucose, which may potentially be associated with its intrinsic high level of phenolic compounds (PCs). To maximize the PCs yield and thereby enhance their antioxidant activity, orthogonal experiments were designed in sequence for extrusion of Jizi439 black wheat bran (BWB) powder and followed by the extraction of PCs assisted with ultrasound technique. White wheat bran was used as a control. The optimum condition for extrusion was 110 °C, 25% feed water content, 140 rpm screw speed; meanwhile, 50 °C, 40 min, 35 kHz ultrasonic frequency, 300 W ultrasonic power for ultrasound-assisted extraction (UAE). Total phenolic content (TPC) as determined by Folin–Ciocalteu method was 2856.3 ± 57.7 μg gallic acid equivalents (GAE) per gram of dry weight (DW) of phenolic extract; meanwhile, antioxidant activity (AA) in terms of DPPH radical scavenging ratio was 85.5% ± 1.1% under optimized conditions, which were both significantly higher than the control. Phenolic acids except for gallic acid, as well as flavonoids, including luteolin and apigenin were increased by extrusion and ultrasound, as suggested by HPLC results. In conclusion, our study would provide a valuable reference for processing Jizi439 BWB before making or commercially utilize it into health-related food products.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Julian Quintero Quiroz ◽  
Ana Maria Naranjo Duran ◽  
Mariluz Silva Garcia ◽  
Gelmy Luz Ciro Gomez ◽  
John Jairo Rojas Camargo

This study evaluated the antimicrobial activity (i.e., against Bacillus cereus and Staphylococcus aureus) and the antioxidant activity (i.e., ABTS, FRAP, and DPPH) of annatto seeds extract obtained by ultrasound-assisted extraction. A response surface design with three levels such as pH (2-11), solvent concentration (50-96 %), seed-to-solvent ratio (1:2–1:10), and treatment time (0-30 min) was employed to determine the optimal experimental conditions. Thus, a pH of 7.0, seed-to-solvent ratio of 1:7, and treatment time of 20 min were selected as optimal rendering an extract having a 0.62% of bixin, 3.81 mg gallic acid/mg equivalent of polyphenol compounds (ABTS 1035.7, FRAP 424.7, and DPPH 1161.5 μM trolox/L), and a minimal inhibitory concentration against Bacillus cereus and Staphylococcus aureus of 32 and 16 mg/L, respectively. Further, the main bioactive compounds identified by LC/ESI-MS were bixin and catechin, chlorogenic acid, chrysin, butein, hypolaetin, licochalcone A, and xanthohumol.


Sign in / Sign up

Export Citation Format

Share Document