scholarly journals Comprehensive Evaluation for Cold Tolerance in Wucai (Brassica campestris L.) by the Performance Index on an Absorption Basis (PIabs)

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 61 ◽  
Author(s):  
Yun Dai ◽  
Lingyun Yuan ◽  
Shujiang Zhang ◽  
Jie Wang ◽  
Shilei Xie ◽  
...  

Wucai is a biannual leafy vegetable that is more sensitive to cold than most Brassicaceae vegetables. Here, phenotypic differences in wucai were investigated to identify those genotypes with high cold tolerance at low temperature, which could allow their cultivation in cold climates. In all, on the basis of PIabs, 20 wucai genotypes (10 lower PIabs and 10 higher PIabs) were selected from a collection of 124 genotypes. Both W16-13 and SW-3 (higher PIabs) and the LS-6 and W15-16 (lower PIabs) were screened from the 20 wucai genotypes according to several key plant physiological traits: net photosynthetic rate, electrolyte leakage, chilling injury index, specific leaf area, malondialdehyde contents, and PIabs. To further verify the reliability of PIabs, four genotypes were grown under low temperature gradient conditions and their morphological indexes, chlorophyll content, total antioxidant capacity, fluorescence transients (OJIP transients), leaf cell ultrastructure, and gene expression were measured. These indicators strongly demonstrated that the W16-13 and SW-3, which had higher PIabs, possessed higher resistance to cold stress, while both LS-6 and W15-16 were sensitive to cold. As this study shows, the easily measured performance index, PIabs, could be applied to wucai genotypes to screen for one or more varieties characterized by higher cold tolerance.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2746
Author(s):  
Qian Feng ◽  
Sen Yang ◽  
Yijia Wang ◽  
Lu Lu ◽  
Mintao Sun ◽  
...  

Cold stress is a limiting factor to the growth and development of cucumber in the temperate regions; hence, improving the crop’s tolerance to low temperature is highly pertinent. The regulation of low-temperature tolerance with exogenous ABA and CaCl2 was investigated in the cucumber variety Zhongnong 26. Under low-temperature conditions (day/night 12/12 h at 5 °C), seedlings were sprayed with a single application of ABA, CaCl2, or a combination of both. Our analysis included a calculated chilling injury index, malondialdehyde (MDA) content, relative electrical conductivity, antioxidant enzyme activities (SOD, CAT, and APX), leaf tissue structure, and expression of cold-related genes by transcriptome sequencing. Compared with the water control treatment, the combined ABA + CaCl2 treatment significantly improved the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of the seedlings by 34.47%, 59.66%, and 118.80%, respectively (p < 0.05), and significantly reduced the chilling injury index, relative electrical conductivity, and MDA content, by 89.47%, 62.17%, and 44.55%, respectively (p < 0.05). Transcriptome analysis showed that compared with the water control treatment, 3442 genes were differentially expressed for the combined treatment, 3921 for the ABA treatment, and 1333 for the CaCl2 treatment. KEGG enrichment analysis for both the ABA and combined ABA + CaCl2 treatments (as compared to the water control) showed that it mainly involves genes of the photosynthesis pathway and metabolic pathways. Differentially expressed genes following the CaCl2 treatment were mainly involved in plant hormone signal transduction, plant–pathogen interaction, MAPK signaling pathway–plant, phenylpropanoid biosynthesis, and circadian rhythm–plant. qRT-PCR analysis and RNA-seq results showed a consistent trend in variation of differential gene expression. Overall, this study demonstrated that although all three treatments provided some protection, the combined treatment of ABA (35 mg/L) with CaCl2 (500 mg/L) afforded the best results. A combined ABA + CaCl2 treatment can effectively alleviate cold-stress damage to cucumber seedlings by inducing physiological changes in photosynthesis and metabolism, and provides a theoretical basis and technical support for the application of exogenous ABA and CaCl2 for low-temperature protection of cucumber seedlings.


2020 ◽  
Vol 27 (1) ◽  
pp. 22-31
Author(s):  
Lan Chen ◽  
Yanfang Pan ◽  
Haideng Li ◽  
Xiaoyu Jia ◽  
Yanli Guo ◽  
...  

Pomegranate is a kind of fruit with low temperature sensitivity. Abnormal low temperature can easily lead to chilling injury, which negatively impacts the appearance of fruit, accelerates browning and deterioration, as well as seriously reduces the consumption quality and commodity value of pomegranate. This study was carried out to determine the effect of methyl jasmonate on chilling injury of pomegranate during low temperature storage. The result showed that methyl jasmonate treatment effectively maintained edible quality of pomegranate, suppressed the polyphenol oxidase activity and the development of chilling injury index, and inhibited the decline of total phenol content and the increase of malondialdehyde content and cell membrane permeability. In addition, methyl jasmonate could also enhance the disease resistance of fruit by increasing the content of soluble protein, and effectively maintain the integrity of epidermal cell structure and tissue structure. Overall, the conclusion of this paper is that methyl jasmonate can be used as an effective means to suppress chilling injury in postharvest storage of pomegranate.


2020 ◽  
Vol 47 (1) ◽  
pp. 80
Author(s):  
Meng Li ◽  
Xiaoyu Duan ◽  
Qian Wang ◽  
Wei Chen ◽  
Hongyan Qi

Low temperature restrains the growth and development of melons, as well as severely impairing the yield and quality. To obtain a rapid and accurate method for evaluating cold tolerance of melon, 10 genotypes were selected to investigate their cold tolerance at seedling stage. Chilling stress (15°C/6°C, day/night) increased leaf angles and caused leaves wilted: the phenotypes of the 10 genotypes were obviously different. Thus, a new predicted method for chilling injury index (CII) of melon was constructed based on the change of leaf angle and leaf state. The CII showed significant correlation with survival rate, maximum photochemical quantum yield of PSII (Fv/Fm) and changes of SPAD value. Moreover, the validity of the method was further verified by seedlings growth, photosynthesis, membrane permeability and metabolites accumulation of four screened genotypes. Taken together, this work provides a morphological and accurate method for evaluating cold tolerance in melon.


2020 ◽  
Vol 16 (3) ◽  
pp. 116
Author(s):  
Nurhayati Hamzah ◽  
NFN Assrorudin

<p>Buah pisang nipah termasuk buah klimakterik yang  pematangannya akan berlangsung cepat jika disimpan pada suhu ruang. Penyimpanan suhu rendah merupakan salah satu teknik memperpanjang umur simpan buah pisang namun dapat menyebabkan  kerusakan berupa pencokelatan kulit buah yang dikenal sebagai salah satu gejala <em>chilling injury</em>. Penelitian ini bertujuan untuk mendapatkan informasi tentang pengaruh pengukusan dalam menurunkan gejala <em>chilling injury </em>serta mempertahankan mutu buah pisang nipah yang disimpan pada suhu rendah. Percobaan dilakukan menggunakan  rancangan acak lengkap dengan empat perlakuan dan tiga ulangan. Perlakuan terdiri dari pengukusan pada suhu 42oC selama 15 menit, 48oC selama 10 menit, 100oC selama 30 detik dan tanpa pengukusan. Parameter pengamatan terdiri dari indeks <em>chilling injury</em>, susut bobot, kekerasan buah dan total padatan terlarut. Hasil penelitian menunjukkan perlakuan pengukusan dapat mengurangi gejala <em>chilling injury </em>dan dapat mempertahankan buah pisang selama 15 hari penyimpanan. Pengukusan pada suhu 100oC selama 30 detik merupakan perlakuan terbaik. Perlakuan pengukusan tidak menurunkan kandungan total padatan terlarut dan berpengaruh tidak nyata terhadap peningkatan susut bobot serta penurunan kekerasan buah pisang nipah.</p><p> </p><p><strong>Steaming to Reduce the Symptoms of Chilling Injury and Maintaining Quality of  Banana CV. Nipah</strong></p><p>Nipah banana is a kind of climacteric fruit which is the ripening can be faster if its storage at room temperature. Low temperature storage is a way to prolong shelf-life but can caused peel browning, known as chilling injury symptom. This study was aiming to get information about steaming decreased chilling injury symptom and maintaining nipah banana quality at low temperature. The experiment was arranged in a randomized complete design with 4 treatments and 3 replication. Nipah bananas were steamed at 42oC 15 minutes, 48oC 10 minutes, 100oC 30 seconds and unsteamed. Chilling injury index, weight lost, firmnes and total soluble solid were measured. The result showed that steaming treatments decreased chilling injury symptom and maintained Nipah banana until 15 days storage. Steaming on 100oC,30 seconds was more effective to alleviate chilling injury symptom than others. No significant effect were found on weight loss, firmness and total soluble solid.</p><p><strong><br /></strong></p>


2019 ◽  
Vol 18 (2) ◽  
pp. 29-37 ◽  
Author(s):  
Fardin Ghanbari ◽  
Sajad Kordi

Chilling stress is of major limiting factors influencing the growth and development of warm-season crops like cucumber. In this research, the possibility of chilling tolerance of cucumber seedlings was investigated through employing the drought and low-temperature pretreatments. The factorial experiment consisted of two factors including cucumber cultivars (i.e. ‘Super Dominos’ and ‘Super Star’) and hardening treatments (control, low temperatures at 10°C, and 15°C and drought simulated by 10% and 20% PEG) based on completely randomized design (CRD) in 3 replications. After applying treatments and providing them 48 h opportunity to be recovered, the seedlings were subjected to 3°C for a six-day period and 6 h for each day. All hardening treatments improved seedlings’ growth, chlorophyll content, total phenol (TP) and antioxidant enzyme activities, while reducing chilling injury index and malondialdehyde (MDA) content. Comparing to temperature hardening, the drought pretreatment showed to have a better effect on inducing the chilling tolerance into cultivars. Overall, the results of this experiment showed that employing drought and low-temperature pretreatments enabled cucumber seedlings to mitigate the harmful effects of chilling.


2021 ◽  
pp. 108201322110320
Author(s):  
Mariya Batool ◽  
Omar Bashir ◽  
Tawheed Amin ◽  
Sajad Mohd Wani ◽  
FA Masoodi ◽  
...  

This study aimed at investigating the influence of different postharvest treatments with oxalic acid (OA) and salicylic acid (SA) on quality attributes and postharvest shelf life of temperate grown apricot varieties stored under controlled atmosphere (CA) storage conditions. After each treatment was given, the samples were stored in CA store maintained at a temperature of 0 °C, 90 ± 5% relative humidity, 5% oxygen and 15% carbon dioxide for 30 days. Results indicated that both OA and SA treatments significantly (p ≤ 0.05) retained total soluble solids, titratable acidity, color profile, ascorbic acid content and total phenolic content of apricot varieties and had a positive effect on antioxidant activity and texture of samples compared to control. However, carotenoid content was found to be higher in control. Both the treatments reduced chilling injury index, weight loss and decay percentage of samples. Moreover, it was found that SA treatment was the most effective treatment in maintaining visual color of apricots while OA maintained fruit firmness and effectively decreased the decay percentage and chilling injury index of apricot varieties. In conclusion, it was found that both OA and SA have the potential to extend storage life of apricots and maintain quality attributes of the crop during CA storage.


2021 ◽  
Vol 47 ◽  
pp. 38-45
Author(s):  
Johannes Overgaard ◽  
Lucie Gerber ◽  
Mads Kuhlmann Andersen

2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


Sign in / Sign up

Export Citation Format

Share Document