scholarly journals HARDENING PRETREATMENT BY DROUGHT AND LOW TEMPERATURE ENHANCED CHILLING STRESS TOLERANCE OF CUCUMBER SEEDLINGS

2019 ◽  
Vol 18 (2) ◽  
pp. 29-37 ◽  
Author(s):  
Fardin Ghanbari ◽  
Sajad Kordi

Chilling stress is of major limiting factors influencing the growth and development of warm-season crops like cucumber. In this research, the possibility of chilling tolerance of cucumber seedlings was investigated through employing the drought and low-temperature pretreatments. The factorial experiment consisted of two factors including cucumber cultivars (i.e. ‘Super Dominos’ and ‘Super Star’) and hardening treatments (control, low temperatures at 10°C, and 15°C and drought simulated by 10% and 20% PEG) based on completely randomized design (CRD) in 3 replications. After applying treatments and providing them 48 h opportunity to be recovered, the seedlings were subjected to 3°C for a six-day period and 6 h for each day. All hardening treatments improved seedlings’ growth, chlorophyll content, total phenol (TP) and antioxidant enzyme activities, while reducing chilling injury index and malondialdehyde (MDA) content. Comparing to temperature hardening, the drought pretreatment showed to have a better effect on inducing the chilling tolerance into cultivars. Overall, the results of this experiment showed that employing drought and low-temperature pretreatments enabled cucumber seedlings to mitigate the harmful effects of chilling.

2021 ◽  
Vol 22 (23) ◽  
pp. 12910
Author(s):  
Xiaowei Zhang ◽  
Yanyan Zhang ◽  
Chenxiao Xu ◽  
Kun Liu ◽  
Huangai Bi ◽  
...  

Hydrogen sulfide (H2S) plays a crucial role in regulating chilling tolerance. However, the role of hydrogen peroxide (H2O2) and auxin in H2S-induced signal transduction in the chilling stress response of plants was unclear. In this study, 1.0 mM exogenous H2O2 and 75 μM indole-3-acetic acid (IAA) significantly improved the chilling tolerance of cucumber seedlings, as demonstrated by the mild plant chilling injury symptoms, lower chilling injury index (CI), electrolyte leakage (EL), and malondialdehyde content (MDA) as well as higher levels of photosynthesis and cold-responsive genes under chilling stress. IAA-induced chilling tolerance was weakened by N, N′-dimethylthiourea (DMTU, a scavenger of H2O2), but the polar transport inhibitor of IAA (1-naphthylphthalamic acid, NPA) did not affect H2O2-induced mitigation of chilling stress. IAA significantly enhanced endogenous H2O2 synthesis, but H2O2 had minimal effects on endogenous IAA content in cucumber seedlings. In addition, the H2O2 scavenger DMTU, inhibitor of H2O2 synthesis (diphenyleneiodonium chloride, DPI), and IAA polar transport inhibitor NPA reduced H2S-induced chilling tolerance. Sodium hydrosulfide (NaHS) increased H2O2 and IAA levels, flavin monooxygenase (FMO) activity, and respiratory burst oxidase homolog (RBOH1) and FMO-like protein (YUCCA2) mRNA levels in cucumber seedlings. DMTU, DPI, and NPA diminished NaHS-induced H2O2 production, but DMTU and DPI did not affect IAA levels induced by NaHS during chilling stress. Taken together, the present data indicate that H2O2 as a downstream signal of IAA mediates H2S-induced chilling tolerance in cucumber seedlings.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2746
Author(s):  
Qian Feng ◽  
Sen Yang ◽  
Yijia Wang ◽  
Lu Lu ◽  
Mintao Sun ◽  
...  

Cold stress is a limiting factor to the growth and development of cucumber in the temperate regions; hence, improving the crop’s tolerance to low temperature is highly pertinent. The regulation of low-temperature tolerance with exogenous ABA and CaCl2 was investigated in the cucumber variety Zhongnong 26. Under low-temperature conditions (day/night 12/12 h at 5 °C), seedlings were sprayed with a single application of ABA, CaCl2, or a combination of both. Our analysis included a calculated chilling injury index, malondialdehyde (MDA) content, relative electrical conductivity, antioxidant enzyme activities (SOD, CAT, and APX), leaf tissue structure, and expression of cold-related genes by transcriptome sequencing. Compared with the water control treatment, the combined ABA + CaCl2 treatment significantly improved the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of the seedlings by 34.47%, 59.66%, and 118.80%, respectively (p < 0.05), and significantly reduced the chilling injury index, relative electrical conductivity, and MDA content, by 89.47%, 62.17%, and 44.55%, respectively (p < 0.05). Transcriptome analysis showed that compared with the water control treatment, 3442 genes were differentially expressed for the combined treatment, 3921 for the ABA treatment, and 1333 for the CaCl2 treatment. KEGG enrichment analysis for both the ABA and combined ABA + CaCl2 treatments (as compared to the water control) showed that it mainly involves genes of the photosynthesis pathway and metabolic pathways. Differentially expressed genes following the CaCl2 treatment were mainly involved in plant hormone signal transduction, plant–pathogen interaction, MAPK signaling pathway–plant, phenylpropanoid biosynthesis, and circadian rhythm–plant. qRT-PCR analysis and RNA-seq results showed a consistent trend in variation of differential gene expression. Overall, this study demonstrated that although all three treatments provided some protection, the combined treatment of ABA (35 mg/L) with CaCl2 (500 mg/L) afforded the best results. A combined ABA + CaCl2 treatment can effectively alleviate cold-stress damage to cucumber seedlings by inducing physiological changes in photosynthesis and metabolism, and provides a theoretical basis and technical support for the application of exogenous ABA and CaCl2 for low-temperature protection of cucumber seedlings.


2020 ◽  
Vol 7 (6) ◽  
pp. 192243
Author(s):  
Zhenhua Guo ◽  
Lijun Cai ◽  
Chuanxue Liu ◽  
Cuihong Huang ◽  
Zhiqiang Chen ◽  
...  

As one of the abiotic stresses, low temperature severely threatens rice production during its entire growth period, especially during the booting stage. In the present study, transcriptome analysis was performed comparing Longjing (LJ) 25 (chilling-tolerant) and LJ 11 (chilling-sensitive) rice varieties to identify genes associated with chilling tolerance in rice spikelets. A total of 23 845 expressed genes and 13 205 differentially expressed genes (DEGs) were identified, respectively. Gene ontology (GO) enrichment analyses revealed ‘response to cold’ (containing 180 DEGs) as the only category enriched in both varieties during the entire cold treatment period. Through M ap M an analysis, we identified nine and six DEGs related to the Calvin cycle and antioxidant enzymes, respectively, including OsRBCS3 , OsRBCS2 , OsRBCS4 , OsAPX2 and OsCATC , that under chilling stress were markedly downregulated in LJ11 compared with LJ25. Furthermore, we predicted their protein–protein interaction (PPI) network and identified nine hub genes (the threshold of co-expressed gene number ≥ 11) in Cytoscape, including three RuBisCO-related genes with 14 co-expressed genes. Under chilling stress, antioxidant enzyme activities (peroxidase (POD) and catalase (CAT)) were downregulated in LJ11 compared with LJ25. However, the content of malondialdehyde (MDA) was higher in LJ11 compared with LJ25. Collectively, our findings identify low temperature responsive genes that can be effectively used as candidate genes for molecular breeding programmes to increase the chilling tolerance of rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaowei Zhang ◽  
Yiqing Feng ◽  
Tongtong Jing ◽  
Xutao Liu ◽  
Xizhen Ai ◽  
...  

Chilling adversely affects the photosynthesis of thermophilic plants, which further leads to a decline in growth and yield. The role of melatonin (MT) in the stress response of plants has been investigated, while the mechanisms by which MT regulates the chilling tolerance of chilling-sensitive cucumber remain unclear. This study demonstrated that MT positively regulated the chilling tolerance of cucumber seedlings and that 1.0 μmol⋅L–1 was the optimum concentration, of which the chilling injury index, electrolyte leakage (EL), and malondialdehyde (MDA) were the lowest, while growth was the highest among all treatments. MT triggered the activity and expression of antioxidant enzymes, which in turn decreased hydrogen peroxide (H2O2) and superoxide anion (O2⋅–) accumulation caused by chilling stress. Meanwhile, MT attenuated the chilling-induced decrease, in the net photosynthetic rate (Pn) and promoted photoprotection for both photosystem II (PSII) and photosystem I (PSI), regarding the higher maximum quantum efficiency of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), the content of active P700 (ΔI/I0), and photosynthetic electron transport. The proteome analysis and western blot data revealed that MT upregulated the protein levels of PSI reaction center subunits (PsaD, PsaE, PsaF, PsaH, and PsaN), PSII-associated protein PsbA (D1), and ribulose-1,5-bisphosphate carboxylase or oxygenase large subunit (RBCL) and Rubisco activase (RCA). These results suggest that MT enhances the chilling tolerance of cucumber through the activation of antioxidant enzymes and the induction of key PSI-, PSII-related and carbon assimilation genes, which finally alleviates damage to the photosynthetic apparatus and decreases oxidative damage to cucumber seedlings under chilling stress.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Libin Wang ◽  
Xiuxiu Sun ◽  
Weiqi Luo ◽  
Chunlu Qian

C-repeat binding factor- (CBF-) dependent signaling pathway is proposed to be a key responder to low temperature stress in plant. Jasmonates (JAs), the endogenous signal molecules in plant, participate in plant defense against (a)biotic stresses; however, the mechanism has not been fully clarified so far. With the progress made in JAs biopathway, signal transduction, and their relationship with CBF-dependent signaling pathway, our knowledge of the roles of the CBF-dependent signaling pathway in JAs-mediated improvement of chilling tolerance accumulates. In this review, we firstly briefly review the chilling injury (CI) characteristics of postharvest horticultural commodities, then introduce the biopathway and signal transduction of JAs, subsequently summarize the roles of the CBF-dependent signaling pathway under low temperature stress, and finally describe the linkage between JAs signal transduction and the CBF-dependent signaling pathway.


2020 ◽  
Vol 27 (1) ◽  
pp. 22-31
Author(s):  
Lan Chen ◽  
Yanfang Pan ◽  
Haideng Li ◽  
Xiaoyu Jia ◽  
Yanli Guo ◽  
...  

Pomegranate is a kind of fruit with low temperature sensitivity. Abnormal low temperature can easily lead to chilling injury, which negatively impacts the appearance of fruit, accelerates browning and deterioration, as well as seriously reduces the consumption quality and commodity value of pomegranate. This study was carried out to determine the effect of methyl jasmonate on chilling injury of pomegranate during low temperature storage. The result showed that methyl jasmonate treatment effectively maintained edible quality of pomegranate, suppressed the polyphenol oxidase activity and the development of chilling injury index, and inhibited the decline of total phenol content and the increase of malondialdehyde content and cell membrane permeability. In addition, methyl jasmonate could also enhance the disease resistance of fruit by increasing the content of soluble protein, and effectively maintain the integrity of epidermal cell structure and tissue structure. Overall, the conclusion of this paper is that methyl jasmonate can be used as an effective means to suppress chilling injury in postharvest storage of pomegranate.


2018 ◽  
Vol 10 (3) ◽  
pp. 122
Author(s):  
Juliana Domingues Lima ◽  
Danilo Eduardo Rozane ◽  
Eduardo Nardini Gomes ◽  
Silvia Helena Modenese Gorla da Silva ◽  
Wilson Da Silva Moraes ◽  
...  

Low temperature in the field causes chilling injury (CI) in banana and peel browning. The aim of this paper was to investigate the influence of different bagging materials and combinations on bunch development of banana (Musa AAA cv. Nanica) and the occurrence of CI. The study was carried in Jacupiranga, São Paulo, Brazil, in a completely randomized design in 2 × 9 factorial, two years of formation (2013 and 2014) and nine bagging materials, with eight replicates. Materials consisted in blue transparent polyethylene, white non-woven fabric, white opaque polyethylene, bubble wrap, white laminated non-woven fabric, double paper, blue transparent polyethylene plus kraft paper, blue transparent polyethylene plus white non-woven fabric and control (non-bagged). Fruits formed in both years showed low L* and C* values related to the CI index. On the coldest days of 2013 and 2014, bagging raised the temperature by only 1.91 and 3.17 °C, respectively. Depending on the year of bunch formation, the bagging materials influenced the period between flowering and harvest, but not the bunch mass. In the green fruit, the content of chlorophylls was lower in double paper, while L* was higher, but there were no differences in the content of phenols for the different materials. In mature fruits, CI index, L* and a* were not affected by the bagging materials, unlike coordinates b*, h° and C*, which were lower for double paper, with no difference between other materials and non-bagged fruits. Bagging materials did not prevent CI and did not reduce the peel browning intensity.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 61 ◽  
Author(s):  
Yun Dai ◽  
Lingyun Yuan ◽  
Shujiang Zhang ◽  
Jie Wang ◽  
Shilei Xie ◽  
...  

Wucai is a biannual leafy vegetable that is more sensitive to cold than most Brassicaceae vegetables. Here, phenotypic differences in wucai were investigated to identify those genotypes with high cold tolerance at low temperature, which could allow their cultivation in cold climates. In all, on the basis of PIabs, 20 wucai genotypes (10 lower PIabs and 10 higher PIabs) were selected from a collection of 124 genotypes. Both W16-13 and SW-3 (higher PIabs) and the LS-6 and W15-16 (lower PIabs) were screened from the 20 wucai genotypes according to several key plant physiological traits: net photosynthetic rate, electrolyte leakage, chilling injury index, specific leaf area, malondialdehyde contents, and PIabs. To further verify the reliability of PIabs, four genotypes were grown under low temperature gradient conditions and their morphological indexes, chlorophyll content, total antioxidant capacity, fluorescence transients (OJIP transients), leaf cell ultrastructure, and gene expression were measured. These indicators strongly demonstrated that the W16-13 and SW-3, which had higher PIabs, possessed higher resistance to cold stress, while both LS-6 and W15-16 were sensitive to cold. As this study shows, the easily measured performance index, PIabs, could be applied to wucai genotypes to screen for one or more varieties characterized by higher cold tolerance.


2016 ◽  
Vol 107 (1) ◽  
pp. 33 ◽  
Author(s):  
Ghader HABIBI

Low temperature is one of the major adverse climatic factors that suppress plant growth and sustainable agricultural development. In these climate conditions, silicon (Si) can mitigate various abiotic stresses including low temperature. In this study, the roles of foliar-applied silicon (10 mM potassium metasilicate) in enhancing tolerance to chilling stress were investigated in maize (<em>Zea mays</em> ‘Fajr’) plants. The low temperature stress caused significant reduction of plant growth and relative water content; however, Si ameliorated these effects. Si supply in maize exhibited a significantly positive effect on accumulation of free amino acids, and reduced the necrotic leaf area. The decrease in maximum quantum yield of PSII (F<sub>v</sub>/F<sub>m</sub>) was reversible during recovery, but not in the non-Si-treated leaves. This can be explained by enhancement of protective pigments; carotenoid and anthocyanin leading to the protection of PSII from damage. Additionally, analysis of OJIP transients revealed that Si reduced cold damaging effect on performance index (PI<sub>abs</sub>) and F<sub>v</sub>/F<sub>m</sub> through improvement of excitation energy trapping (TR<sub>0</sub>/CS) and electron transport (ET<sub>0</sub>/CS) per excited cross-section of leaf. The malondialdehyde (MDA) concentration, which was significantly increased under chilling stress, was decreased by Si. The reduced glutathione and ascorbate concentrations were higher in Si-treated plants as compared to those without application of Si under chilling stress. These results indicated that Si could enhance the chilling stress tolerance of maize plants through improving the biomass accumulation, maintaining a high level of glutathione, ascorbic acid, protein, protective pigments, and enhancing the photochemical reactions. This study also suggests that the foliar-applied Si increases recovery ability from chilling injury.


2020 ◽  
Vol 47 (1) ◽  
pp. 80
Author(s):  
Meng Li ◽  
Xiaoyu Duan ◽  
Qian Wang ◽  
Wei Chen ◽  
Hongyan Qi

Low temperature restrains the growth and development of melons, as well as severely impairing the yield and quality. To obtain a rapid and accurate method for evaluating cold tolerance of melon, 10 genotypes were selected to investigate their cold tolerance at seedling stage. Chilling stress (15°C/6°C, day/night) increased leaf angles and caused leaves wilted: the phenotypes of the 10 genotypes were obviously different. Thus, a new predicted method for chilling injury index (CII) of melon was constructed based on the change of leaf angle and leaf state. The CII showed significant correlation with survival rate, maximum photochemical quantum yield of PSII (Fv/Fm) and changes of SPAD value. Moreover, the validity of the method was further verified by seedlings growth, photosynthesis, membrane permeability and metabolites accumulation of four screened genotypes. Taken together, this work provides a morphological and accurate method for evaluating cold tolerance in melon.


Sign in / Sign up

Export Citation Format

Share Document