scholarly journals Grapevine Phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and Climate Change Projections

Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 210 ◽  
Author(s):  
Ricardo Costa ◽  
Helder Fraga ◽  
André Fonseca ◽  
Iñaki García de Cortázar-Atauri ◽  
Maria C. Val ◽  
...  

Projections of grapevine phenophases under future climate change scenarios are strategic decision support tools for viticulturists and wine producers. Several phenological models are tested for budburst, flowering, and veraison and for two main grapevine varieties (cv. Touriga Franca and Touriga Nacional) growing in the Douro Demarcated Region. Four forcing models (Growing degree-days, Richardson, Sigmoid, and Wang) and three dormancy models (Bidabe, Smoothed Utah and Chuine), with different parameterizations and combinations, are used. New datasets, combing phenology with weather station data, widespread over the Douro wine region, were used for this purpose. The eight best performing models and parameterizations were selected for each phenophase and variety, based on performance metrics. For both cultivars, results revealed moderate performances (0.4 < R2 < 0.7) for budburst, while high performances (R2 > 0.7) were found for flowering and veraison, particularly when Growing degree-days or Sigmoid models are used, respectively. Climate change projections were based on a two-member climate model ensemble from the EURO-CORDEX project under RCP4.5. Projections depicted an anticipation of phenophase timings by 6, 8 or 10–12 days until the end of the century for budburst, flowering, and veraison, respectively. The inter-model variability is of approximately 2–4 days for flowering and veraison and 4–6 days for budburst. These results establish grounds for the implementation of a decision support system for monitoring and short-term prediction of grapevine phenology, thus promoting a more efficient viticulture.

2013 ◽  
Vol 152 (4) ◽  
pp. 523-533 ◽  
Author(s):  
B. J. SUN ◽  
G. C. VAN KOOTEN

SUMMARYIn the present study, the effect of weather on maize yields in northern China was examined using data from 10 districts in Inner Mongolia and two in Shaanxi province. A regression model with a flexible functional form was specified on the basis of agronomic considerations. Explanatory variables included in the model were seasonal growing degree days, precipitation, technological change (e.g. adoption of new crop varieties, improved equipment, better management, etc.) and dummy variables to account for regional fixed effects. Results indicated that a fractional polynomial model in growing degree days could explain variability in maize yields better than a linear or quadratic model. Growing degree days, precipitation in July, August and September, and technological changes were important determinants of maize yields. The results could be used to predict potential maize yields under future climate change scenarios, to construct financial weather products and for policy makers to incentivize technological changes and construction of infrastructure (e.g. irrigation works) that facilitate adaptation to climate change in the agricultural sector.


2005 ◽  
Vol 85 (2) ◽  
pp. 329-343 ◽  
Author(s):  
A. Bootsma ◽  
S. Gameda and D.W. McKenney

Agroclimatic indices (heat units and water deficits) were determined for the Atlantic region of Canada for a baseline climate (1961 to 1990 period) and for two future time periods (2010 to 2039 and 2040 to 2069). Climate scenarios for the future periods were primarily based on outputs from the Canadian General Circulation Model (GCM) that included the effects of aerosols (CGCMI-A), but variability introduced by multiple GCM experiments was also examined. Climatic data for all three periods were interpolated to a grid of about 10 to 15 km. Agroclimatic indices were computed and mapped based on the gridded data. Based on CGCMI-A scenarios interpolated to the fine grid, average crop heat units (CHU) would increase by 300 to 500 CHU for the 2010 to 2039 period and by 500 to 700 CHU for the 2040 to 2069 period in the main agricultural areas of the Atlantic region. However, increases in CHU for the 2040 to 2069 period typically varied from 450 to 1650 units in these regions when variability among GCM experiments was considered, resulting in a projected range of 2650 to 4000 available CHU. Effective growing degree-days above 5°C (EGDD) typically increased by about 400 units for the 2040 to 2069 period in the main agricultural areas, resulting in available EGDD from 1800 to over 2000 units. Uncertainty introduced by multiple GCMs increased the range from 1700 to 2700 EGDD. A decrease in heat units (cooling) is anticipated along part of the coast of Labrador. Anticipated changes in water deficits (DEFICIT), defined as the amount by which potential evapotranspiration exceeded precipitation over the growing season, typically ranged from +50 to −50 mm for both periods, but this range widened from +50 to −100 mm when variability among GCM experiments was considered. The greatest increases in deficits were expected in the central region of New Brunswick for the 2040 to 2069 period. Our interpolation procedures estimated mean winter and summer temperature changes that were 1.4°C on average lower than a statistical downscaling procedure (SDSM) for four locations. Increases in precipitation during summer and autumn averaged 20% less than SDSM. During periods when SDSM estimated relatively small changes in temperature or precipitation, our interpolation procedure tended to produce changes that were larger than SDSM. Additional investigations would be beneficial that explore the impact of a range of scenarios from other GCM models, other downscaling methods and the potential effects of change in climate variability on these agroclimatic indices. Potential impacts of these changes on crop yields and production in the region also need to be explored. Key words: Crop heat units, effective growing degree-days, water deficits, climate change scenarios, statistical downscaling, spatial interpolation


2019 ◽  
Vol 11 (8) ◽  
pp. 971 ◽  
Author(s):  
Shilong Ren ◽  
Qiming Qin ◽  
Huazhong Ren ◽  
Juan Sui ◽  
Yao Zhang

Studying wheat phenology can greatly enhance our understanding of how wheat growth responds to climate change, and guide us to reasonably confront its influence. However, comprehensive global-scale wheat phenology–climate analysis is still lacking. In this study, we extracted the wheat harvest date (WHD) from 1981–2014 from satellite data using threshold-, logistic-, and shape-based methods. Then, we analyzed the effects of heat and drought stress on WHD based on gridded daily temperature and monthly drought data (the Palmer drought severity index (PDSI) and the standardized precipitation evapotranspiration index (SPEI)) over global wheat-growing areas. The results show that WHD was generally delayed from the low to mid latitudes. With respect to variation trends, we detected a significant advancement of WHD in 32.1% of the world’s wheat-growing areas since 1981, with an average changing rate of −0.25 days/yr. A significant negative correlation was identified between WHD and the prior three months’ normal-growing-degree-days across 50.4% of the study region, which implies that greater preseason effective temperature accumulation may cause WHD to occur earlier. Meanwhile, WHD was also found to be significantly and negatively correlated with the prior three months’ extreme-growing-degree-days across only 9.6% of the study region (mainly located in northern South Asia and north Central-West Asia). The effects of extreme heat stress were weaker than those of normal thermal conditions. When extreme drought (measured by PDSI/SPEI) occurred in the current month, in the month prior to WHD, and in the second month prior to WHD, it forced WHD to advance by about 9.0/8.1 days, 13.8/12.2 days, and 10.8/5.3 days compared to normal conditions, respectively. In conclusion, we highlight the effects that heat and drought stress have on advancing wheat harvest timing, which should be a research focus under future climate change.


2016 ◽  
Vol 46 (2) ◽  
pp. 175-188 ◽  
Author(s):  
Andre de Arruda LYRA ◽  
Sin Chan CHOU ◽  
Gilvan de Oliveira SAMPAIO

ABSTRACT: Despite the reduction in deforestation rate in recent years, the impact of global warming by itself can cause changes in vegetation cover. The objective of this work was to investigate the possible changes on the major Brazilian biome, the Amazon Rainforest, under different climate change scenarios. The dynamic vegetation models may simulate changes in vegetation distribution and the biogeochemical processes due to climate change. Initially, the Inland dynamic vegetation model was forced with initial and boundary conditions provided by CFSR and the Eta regional climate model driven by the historical simulation of HadGEM2-ES. These simulations were validated using the Santarém tower data. In the second part, we assess the impact of a future climate change on the Amazon biome by applying the Inland model forced with regional climate change projections. The projections show that some areas of rainforest in the Amazon region are replaced by deciduous forest type and grassland in RCP4.5 scenario and only by grassland in RCP8.5 scenario at the end of this century. The model indicates a reduction of approximately 9% in the area of tropical forest in RCP4.5 scenario and a further reduction in the RCP8.5 scenario of about 50% in the eastern region of Amazon. Although the increase of CO2 atmospheric concentration may favour the growth of trees, the projections of Eta-HadGEM2-ES show increase of temperature and reduction of rainfall in the Amazon region, which caused the forest degradation in these simulations.


2019 ◽  
Vol 2 (1) ◽  
pp. 193-214
Author(s):  
Lal Prasad Amgain ◽  
Bishal Dhakal ◽  
Umesh Shrestha ◽  
Srijana Marasini

Average productivity of 3.50 t/ha of rice, 2.50 t/ha of maize and 2.45 t/ha of wheat in Nepal have been very less than their potential productivity  for which précised agronomic management and changing climatic scenarios have been reported the most challenging factors at present. Cropping system Model (CSM)-Crop Estimation through Resource and Environment Synthesis (CERES)- Rice, Maize and Wheat, embedded under Decision Support System for Agro-technology Transfer (DSSAT) ver. 4.5 was evaluated from a datasets of farmers’ field experimentations of the central Nepal (Terai-Nawalpur and mid-hill-Kaski districts), and showed high sensitivity of model over change in different agronomic management and climate change scenarios. Model calibration was done by using maximum attainable yield treatments for all tested cultivars while validation was accomplished by using the remaining treatments for predicting growth, phenology and yield of all crop cultivars and results were found perfectly matched with the observed results. Further, the different agronomic management options and climate change scenarios as advocated by IPCC for 2020, 2050 and 2080 from base line of 1995 was studied to simulate the growth and yield performance of diverse crop cultivars. The hybrids and short duration cultivars of all three cereals were found more affected due to climate change than the local and long duration crop cultivars. The model simulation results obtained on rice, maize and wheat using DSSAT ver 4.5 model highlighted that there is utmost importance to develop new climate ready crop cultivars to feed the future generation over different climate change scenarios as suggested by IPCC, 2007 and the simulation results should be extrapolated to the major domains of similar agro-ecozones in Nepal. It is suggested that CSM- CERES- model would be reliable and valid approach for getting strategic decision support system especially with regards to the climate change adaptation measures in Nepal.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Sign in / Sign up

Export Citation Format

Share Document