scholarly journals Spatio and temporal variations in population abundance and distribution of peach fruit fly, Bactrocera zonata (Saunders) during future climate change scenarios based on temperature driven phenology model

2021 ◽  
Vol 32 ◽  
pp. 100277
Author(s):  
Jaipal S. Choudhary ◽  
Santosh S. Mali ◽  
Naiyar Naaz ◽  
Sandip Malik ◽  
Bikash Das ◽  
...  
Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 13 ◽  
Author(s):  
Abdolazim Ghanghermeh ◽  
Gholamreza Roshan ◽  
José Orosa ◽  
Ángel Costa

Urban microclimate patterns can play a great role for the allocation and management of cooling and heating energy sources, urban design and architecture, and urban heat island control. Therefore, the present study intends to investigate the variability of spatial and temporal entropy of the Effective Temperature index (ET) for the two basic periods (1971–2010) and the future (2011–2050) in Tehran to determine how the variability degree of the entropy values of the abovementioned bioclimatic would be, based on global warming and future climate change. ArcGIS software and geostatistical methods were used to show the Spatial and Temporal variations of the microclimate pattern in Tehran. However, due to global warming the temperature difference between the different areas of the study has declined, which is believed to reduce the abnormalities and more orderly between the data spatially and over time. It is observed that the lowest values of the Shannon entropy occurred in the last two decades, from 2030 to 2040, and the other in 2040–2050. Because, based on global warming, dominant areas have increased temperature, and the difference in temperature is reduced daily and the temperature difference between the zones of different areas is lower. The results of this study show a decrease in the coefficient of the Shannon entropy of effective temperature for future decades in Tehran. This can be due to the reduction of temperature differences between different regions. However, based on the urban-climate perspective, there is no positive view of this process. Because reducing the urban temperature difference means reducing the local pressure difference as well as reducing local winds. This is a factor that can effective, though limited, in the movement of stagnant urban air and reduction of thermal budget and thermal stress of the city.


2011 ◽  
Vol 102 (2) ◽  
pp. 173-183 ◽  
Author(s):  
W.L. Ni ◽  
Z.H. Li ◽  
H.J. Chen ◽  
F.H. Wan ◽  
W.W. Qu ◽  
...  

AbstractBactrocera zonata(Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution ofB. zonata. The model predicts that, under current climatic conditions,B. zonatawill be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution ofB. zonatawill expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually byB. zonatawere consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution ofB. zonataprojected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread ofB. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.


2021 ◽  
Vol 22 (1) ◽  
pp. 24-32
Author(s):  
M. SRINIVASA RAO ◽  
T.V. PRASAD

Studies were conducted to develop temperature-based phenology model for Spodoptera litura on groundnut, at both constant and fluctuating temperatures and to predict the possibility of pest risk in future climate change scenarios of India using ‘stochastic simulation tool’ in Insect Life Cycle Modelling (ILCYM) software ,which is based on rate summation and cohort up-dating approach. Phenology model predicted temperatures between 25oC and 30oC as the favourable range for S. litura development, survival and reproduction. The intrinsic rate of increase (rm), and finite rate of increase (») increased with increase in temperature from 15oC to 30oC and decreased with increase in temperature. Intrinsic rate of increase (rm), varied from 0.05 females/female/day at 15oC to 0.17 females/female/day at 30oC. S. litura population attained a maximum net reproductive rate ‘Ro’ (334.09 females/female/generation) and total fecundity (1041.88 individuals/ female/generation) at 27°C temperature. Simulated life table parameters were used to determine indices such as the establishment risk index (ERI), the generation index (GI), and activity index (AI) by using the ‘Population distribution and risk mapping’ module of software during present and future climatic scenarios and significant increase in AI and ERI with higher GI at future (2050) climatic conditions compared to current (2000) climatic conditions indicating the strong suitability for establishment and survival of S.litura in India.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
F. Zanatta ◽  
R. Engler ◽  
F. Collart ◽  
O. Broennimann ◽  
R. G. Mateo ◽  
...  

Abstract The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate. Using a hybrid statistical-mechanistic approach accounting for spatial and temporal variations in both climatic and wind conditions, we simulate future migrations across Europe for 40 bryophyte species until 2050. The median ratios between predicted range loss vs expansion by 2050 across species and climate change scenarios range from 1.6 to 3.3 when only shifts in climatic suitability were considered, but increase to 34.7–96.8 when species dispersal abilities are added to our models. This highlights the importance of accounting for dispersal restrictions when projecting future distribution ranges and suggests that even highly dispersive organisms like bryophytes are not equipped to fully track the rates of ongoing climate change in the course of the next decades.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Sign in / Sign up

Export Citation Format

Share Document