scholarly journals Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry

AI ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 429-443
Author(s):  
Luis M. C. Oliveira ◽  
Rafael Dias ◽  
Carine M. Rebello ◽  
Márcio A. F. Martins ◽  
Alírio E. Rodrigues ◽  
...  

Modern society is living in an age of paradigm changes. In part, these changes have been driven by new technologies, which provide high performance computing capabilities that enable the creation of complex Artificial Intelligence systems. Those developments are allowing the emergence of new Cyber Systems where the continuously generated data is utilized to build Artificial Intelligence models used to perform specialized tasks within the system. While, on one hand, the isolated application of the cyber systems is becoming widespread, on the other hand, their synchronical integration with other cyber systems to build a concise and cognitive structure that can interact deeply and autonomously with a physical system is still a completely open question, only addressed in some works from a philosophical point of view. From this standpoint, the AI can play an enabling role to allow the existence of these cognitive CPSs. This review provides a look at some of the aspects that will be crucial in the development of cyber-physical systems, focusing on the application of artificial intelligence to confer cognition to the system. Topics such as control and optimization architectures and digital twins are presented as components of the CPS. It also provides a conceptual overview of the impacts that the application of these technologies might have in the chemical industry, more specifically in the purification of methane.

Author(s):  
A.V. Ivaschenko ◽  
◽  
T.V. Nikiforova ◽  

The article discusses the problem of finding a rational share of artificial intelligence in the organizational system of a manufacturing enterprise. An original formal-logical model of a mixed integrated information environment of a digital enterprise is proposed, which differs from analogues in the possibility of an ontological description of the processes of interaction between personnel and artificial intelligence systems. On the basis of the proposed model, a technique has been developed for the optimal replacement of staffing for cyber-physical systems with artificial intelligence components, which allows balancing the load of human resources and intelligent systems. The proposed developments can be applied in the organization of the production process of enterprises for planning and management, as well as the introduction of new technologies and artificial intelligence. Research results are recommended under the framework of implementation of the concept of Industry 4.0 for modern enterprises of industrial engineering.


2019 ◽  
Vol 98 (1) ◽  
pp. 5-10 ◽  
Author(s):  
E. I. Denisov

The digital revolution poses new challenges for hygienists. From hygienic positions, the essence of digitalization of economy and society, and also ethical problems and projects of legal regulation of robotics, systems of artificial intelligence (AI), augmented and virtual reality (AR-VR) are considered. The aim of the work is the analysis of digitalization from the standpoint of information hygiene, as well as the legal regulation of these new technologies for their hygienic regulation. The range of views of the luminaries of Natural Sciences and Medicine on ethical and philosophical issues of the society, labor, and hygiene is given. Of the 23 Asilomar principles of safe, productive, and moral development of AI systems there are selected 7 hygienically significant ones, that can serve as the scientific basis for the hygienic assessment of cyber-physical systems. The issues of the legal regulation of robotics and AI on the example of the UNESCO draft and the European Parliament resolution, as well as draft laws of the United Kingdom and the United States, are considered. The proposal of Russian specialists on the category of high-risk robots and the presumption of the danger of conscious interaction with AI is noted. The terminology on robots and co-robots in the fields of welfare, medicine, and healthcare is presented. The proposal is described to form a friendly behavior of the robot to implement the ethical norms of robotics for the benefit of man. The systems of AR-VR used in education, industry, architecture, health care, medical Sciences, and entertainment are mentioned, as well as risk factors and symptoms of motion sickness as a form of their manifestation are considered. The basic theory is that of sensory conflict and then activation of the optic-vestibular-spinal system; one talks about the "disease of virtual reality". Possible disorders of the human body functions when using AR-VR devices and medical contraindications, as well as health and safety requirements are systematized. The bases of information hygiene can serve as a tool to preserve the health of workers and the population in the digital age. Robots and AI systems are concluded to require hygienic assessment. Special attention should be paid to the AR-VR systems, which create specific health risks, especially for vulnerable groups. The methods and criteria for evaluating cyber-physical systems on the base of information hygiene and specialized hygiene regulations are urgently needed.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


Author(s):  
Jan-jaap Moerman ◽  
Jan Maarten Schraagen ◽  
Jan Braaksma ◽  
Leo van Dongen

AbstractGraceful extensibility has been recently introduced and can be defined as the ability of a system to extend its capacity to adapt when surprise events challenge its boundaries. It provides basic rules that govern adaptive systems. Railway transportation systems can be considered cyber-physical systems that comprise interacting digital, analog, physical, and human components engineered for safe and reliable railway transport. This enables autonomous driving, new functionalities to achieve higher capacity, greater safety, and real-time health monitoring. New rolling stock introductions require continuous adaptations to meet the challenges of these complex railway systems as an introduction takes several years to complete and deals with changing stakeholder demands, new technologies, and technical constraints which cannot be fully predicted in advance. To sustain adaptability when introducing new rolling stock, the theory of graceful extensibility might be valuable but needs further empirical testing to be useful in the field. This study contributes by assessing the proto-theorems of graceful extensibility in a case study in the railway industry by means of adopting pattern-matching analysis. The results of this study indicate that the majority of theoretical patterns postulated by the theory are corroborated by the data. Guidelines are proposed for further operationalization of the theory in the field. Furthermore, case results indicate the need to adopt management approaches that accept indeterminism as a complement to the prevailing deterministic perspective, to sustain adaptability and deal effectively with surprise events. As such, this study may serve other critical asset introductions dealing with cyber-physical systems in their push for sustained adaptability.


2020 ◽  
Vol 28 (3) ◽  
pp. 556-567
Author(s):  
Rolf Clauberg

This study aims at identifying the challenges of digitalization and artificial intelligence for modern economies, societies and business administration. The implementation of digitalization schemes as Industry 4.0 are presently official policy of many developed countries. The goal is optimization of production processes and supply chains. Artificial intelligence is also affecting many fields. Both technologies are expected to substantially change working conditions for many people. It is important to identify the kind and impact of these changes and possible means to minimize negative effects. For this purpose, this study uses previous results about the disappearance of manufacturing jobs in the USA and their impact on different groups of society together with technical information about the new technologies to deduce expected changes caused by digitalization and artificial intelligence. Results are that both technologies will destroy large numbers of jobs and complete job classes while at the same time creating new jobs very different from the ones destroyed. Extensive permanent education and re-education of employees will be necessary to minimize negative effects, probably even changes to a more broad-based education to improve the potential of job changes into completely new fields. In addition, the technical information about digitalization in cyber-physical systems points to dangers that will require solutions on the international level.


2020 ◽  
Vol 8 (5) ◽  
pp. 42-48
Author(s):  
Yulia Matyuk

The article analyzes the risks and new opportunities that arise before man and modern society in the light of the development of artificial intelligence and robotics in the conditions of the fourth industrial revolution. The rapid development of AI indicates the absence of uniform approaches to assessing the risks and prospects associated with the use of AI. Using PESTEL analysis, the article examines the key areas of interaction between AI and humans, new challenges and prospects that open to humanity in the era of new technologies.


Author(s):  
Evren Daglarli

Today, the effects of promising technologies such as explainable artificial intelligence (xAI) and meta-learning (ML) on the internet of things (IoT) and the cyber-physical systems (CPS), which are important components of Industry 4.0, are increasingly intensified. However, there are important shortcomings that current deep learning models are currently inadequate. These artificial neural network based models are black box models that generalize the data transmitted to it and learn from the data. Therefore, the relational link between input and output is not observable. For these reasons, it is necessary to make serious efforts on the explanability and interpretability of black box models. In the near future, the integration of explainable artificial intelligence and meta-learning approaches to cyber-physical systems will have effects on a high level of virtualization and simulation infrastructure, real-time supply chain, cyber factories with smart machines communicating over the internet, maximizing production efficiency, analysis of service quality and competition level.


Sign in / Sign up

Export Citation Format

Share Document