scholarly journals Evolution of the Seroprevalence of Pestivirus and Respiratory Viral Infections in Spanish Feedlot Lambs

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Teresa Navarro ◽  
Aurora Ortín ◽  
Oscar Cabezón ◽  
Marcelo De Las Heras ◽  
Delia Lacasta ◽  
...  

The presence of respiratory viruses and pestiviruses in sheep has been widely demonstrated, and their ability to cause injury and predispose to respiratory processes have been proven experimentally. A longitudinal observational study was performed to determine the seroprevalence of bovine parainfluenza virus type 3 (BPIV-3), bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BHV-1) and pestiviruses in 120 lambs at the beginning and the end of the fattening period. During this time, the animals were clinically monitored, their growth was recorded, and post-mortem examinations were performed in order to identify the presence of pneumonic lesions in the animals. Seroconversion to all viruses tested except BHV-1 was detected at the end of the period. Initially, BPIV-3 antibodies were the most frequently found, while the most common seroconversion through the analysed period occurred to BRSV. Only 10.8% of the lambs showed no detectable levels of antibodies against any of the tested viruses at the end of the survey. In addition, no statistical differences were found in the presentation of respiratory clinical signs, pneumonic lesions nor in the production performance between lambs that seroconverted and those which did not, except in the case of pestiviruses. The seroconversion to pestiviruses was associated with a reduction in the final weight of the lambs.

2009 ◽  
Vol 29 (7) ◽  
pp. 545-551 ◽  
Author(s):  
Alessandra D. Silva ◽  
Paulo A. Esteves ◽  
Diogenes Dezen ◽  
Anna P. Oliveira ◽  
Fernando R. Spilki ◽  
...  

Bovine herpesvirus type 1 (BoHV-1) is recognized as a major cause of economic losses in cattle. Vaccination has been widely applied to minimize losses induced by BoHV-1 infections. We have previously reported the development of a differential BoHV-1 vaccine, based on a recombinant glycoprotein E (gE)-deleted virus (265gE-). In present paper the efficacy of such recombinant was evaluated as an inactivated vaccine. Five BoHV-1 seronegative calves were vaccinated intramuscularly on day 0 and boostered 30 days later with an inactivated, oil adjuvanted vaccine containing an antigenic mass equivalent to 10(7.0) fifty per cent cell culture infectious doses (CCID50) of 265gE-. Three calves were kept as non vaccinated controls. On day 60 post vaccination both vaccinated and controls were challenged with the virulent parental strain. No clinical signs or adverse effects were seen after or during vaccination. After challenge, 2/5 vaccinated calves showed mild clinical signs of infection, whereas all non vaccinated controls displayed intense rhinotracheitis and shed virus for longer and to higher titres than vaccinated calves. Serological responses were detected in all vaccinated animals after the second dose of vaccine, but not on control calves. Following corticosteroid administration in attempting to induce reactivation of the latent infection, no clinical signs were observed in vaccinated calves, whereas non vaccinated controls showed clinical signs of respiratory disease. In view of its immunogenicity and protective effect upon challenge with a virulent BoHV-1, the oil adjuvanted preparation with the inactivated 265gE- recombinant was shown to be suitable for use as a vaccine.


Virology ◽  
1998 ◽  
Vol 250 (1) ◽  
pp. 220-229 ◽  
Author(s):  
Alexandre N. Zakhartchouk ◽  
P.Seshidhar Reddy ◽  
Mohit Baxi ◽  
Maria E. Baca-Estrada ◽  
Majid Mehtali ◽  
...  

2016 ◽  
Vol 51 (5) ◽  
pp. 676-679 ◽  
Author(s):  
Andre Penido Oliveira ◽  
Marcos Bryan Heinemann ◽  
Adriana Cortez ◽  
Paula Maria Pires do Nascimento ◽  
Romulo Cerqueira Leite ◽  
...  

Abstract: The objective of this work was to investigate the presence of bovine herpesvirus type 1 (BoHV-1) in follicular fluid and in cumulus-oocyte complexes (COC) recovered from naturally infected cows but with no clinical signs of the disease. Cows that were seropositive (n=38) or seronegative (n=8, control) to infectious bovine rhinotracheitis were selected after a serum neutralization test in microplates. The presence of the virus was investigated by PCR in COC and in follicular fluid. Viral DNA was not found in any of the samples. The obtained results suggest that serologically positive cows with no clinical signs of the disease offer negligible risk of transmitting BoHV-1 by COC or follicular fluid.


PEDIATRICS ◽  
1996 ◽  
Vol 97 (6) ◽  
pp. 949-954
Author(s):  
Alan L. Bisno

Acute pharyngitis may be caused by a wide variety of microbial agents (Table 1). The relative importance of each of these agents varies greatly depending on a number of epidemiologic factors, including age of the patient, season of the year, and geographic locale. Viruses Most cases of acute pharyngitis are viral in etiology and involve the pharynx as well as other portions of the respiratory tract as manifestations of the common cold, influenza, or croup. Examples include the rhinoviruses, coronaviruses, influenza A and B, and the parainfluenza viruses. Certain viral infections causing sore throat may exhibit clinical manifestations that are rather distinctive. Examples include enteroviruses (herpangina due to Coxsackie A), Epstein-Barr virus (infectious mononucleosis), cytomegalovirus (cytomegalovirus mononucleosis), adenovirus (pharyngoconjunctival fever, acute respiratory disease of military recruits), and herpes simplex virus (pharyngitis, gingivitis, and stomatitis). In many instances, however, the illnesses caused by these agents may overlap so broadly with that of streptococcal pharyngitis as to be clinically indistinguishable. Thus, Epstein-Barr virus, adenovirus, and herpes virus may all cause fever, exudative pharyngitis, and cervical adenitis. Several studies have documented the role of primary herpesvirus type 1 infection as a cause of acute pharyngitis in college students.1-4 Herpesvirus type 2 can occasionally cause a similar illness as a consequence of oral-genital sexual contact.5 Although herpesvirus infections may involve the anterior oral cavity (vesicular or ulcerative gingivostomatitis) as well as the posterior pharynx, they do not routinely do so. Only about one-fourth of students with culturally and serologically proven primary herpes simplex type 1 pharyngitis studied by Glezen et al,2 for example, had gingivostomatitis.


2011 ◽  
Vol 152 (3-4) ◽  
pp. 270-279 ◽  
Author(s):  
S.I. Chowdhury ◽  
M.C.S. Brum ◽  
C. Coats ◽  
A. Doster ◽  
Huiyong Wei ◽  
...  

2017 ◽  
Vol 38 (6) ◽  
pp. 3915
Author(s):  
Greice Japolla ◽  
Ana Flávia Batista Penido ◽  
Greyciele Rodrigues Almeida ◽  
Luiz Artur Mendes Bataus ◽  
Jair Pereira Cunha Junior ◽  
...  

The specificity of monoclonal antibodies (mAbs) to desired targets makes these molecules suitable for therapeutic and diagnostic uses against a wide range of pathogens. Phage display antibody libraries offer one method by which mAbs can be selected for, without the use of conventional hybridoma technology. In this work, phage display technology was used to construct, select and characterize a combinatorial single chain fragment variable (scFv) antibody library against bovine herpesvirus type 1 (BoHV-1) from the immune repertoire of chickens immunized with the virus. In silico analysis of the hypervariable domains of the antibody heavy chains revealed a high frequency of scFv fragments with low variability, suggesting that selection had probably been carried out and favored by a few im-munogenic viral antigens. The reactivity of the scFv fragments selected against BoHV-1 was demon-strated by Phage-ELISA. A significant increase in antibody reactivity to the target was observed after six rounds of library selection, showing its potential use as a molecule for BoHV-1 diagnosis. The strategy described here opens up a field for the use of phage display as a tool for selection of mono-clonal antibodies that could be used for theranostic applications against infectious and parasitic dis-eases of veterinary interest.


Sign in / Sign up

Export Citation Format

Share Document