scholarly journals Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 664
Author(s):  
Kang Yang ◽  
Xingzhou Tian ◽  
Zhengfa Ma ◽  
Wenxuan Wu

The dietary cation-anion difference (DCAD) has been receiving increased attention in recent years; however, information on rumen fermentation, cellulolytic bacteria populations, and microbiota of female goats fed a negative DCAD diet is less. This study aimed to evaluate the feasibility of feeding a negative DCAD diet for goats with emphasis on rumen fermentation parameters, cellulolytic bacteria populations, and microbiota. Eighteen female goats were randomly blocked to 3 treatments of 6 replicates with 1 goat per replicate. Animals were fed diets with varying DCAD levels at +338 (high DCAD; HD), +152 (control; CON), and −181 (low DCAD; LD). This study lasted 45 days with a 30-d adaption and 15-d trial period. The results showed that the different DCAD levels did not affect the rumen fermentation parameters including pH, buffering capability, acetic acid, propionic acid, butyric acid, sum of acetic acid, propionic acid, and butyric acid, or the ratio of acetic acid/propionic acid (p > 0.05). The 4 main ruminal cellulolytic bacteria populations containing Fibrobacter succinogenes, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Ruminococcus albus did not differ from DCAD treatments (p > 0.05). There was no difference in bacterial richness and diversity indicated by the indices Chao, Abundance Coverage-based Estimator (Ace), or Simpson and Shannon, respectively (p > 0.05), among 3 DCAD levels. Both principal coordinate analysis (PCoA) weighted UniFrac distance and unweighted UniFrac distance showed no difference in the composition of rumen microbiota for CON, HD, and LD (p > 0.05). At the phylum level, Bacteroidetes was the predominant phylum followed by Firmicutes, Synergistetes, Proteobacteria, Spirochaetae, and Tenericutes, and they showed no difference (p > 0.05) in relative abundances except for Firmicutes, which was higher in HD and LD compared to CON (p < 0.05). At the genus level, the relative abundances of 11 genera were not affected by DCAD treatments (p > 0.05). The level of DCAD had no effect (p > 0.05) on growth performance (p > 0.05). Urine pH in LD was lower than HD and CON (p < 0.05). Goats fed LD had higher plasma calcium over HD and CON (p < 0.05). In summary, we conclude that feeding a negative DCAD has no deleterious effects on rumen fermentation and rumen microbiota and can increase the blood calcium level, and is therefore feasible for female goats.

2020 ◽  
Author(s):  
Kang Yang ◽  
Xingzhou Tian ◽  
Shiyan Jian ◽  
Lun Sun ◽  
E Han ◽  
...  

Abstract Background: Dietary cation–anion difference (DCAD) has been receiving increased attention in recent years; however, information on the rumen fermentation, cellulolytic bacteria populations, and microbiota of goats fed a low-DCAD diet is less. This study aimed to evaluate the feasibility of feeding a low-DCAD diet for goats with emphasis on rumen fermentation parameters, cellulolytic bacteria populations and microbiota. Growth performance, urine pH, and plasma metabolites were also analyzed as well. Materials and method: Eighteen goats were randomly allocated to 3 treatments with six replicates of each treatment and 1 goat per replicate. Animals were fed diets with varying DCAD levels at +338 (High DCAD; HD), +152 (Control; CON), and −181 (Low DCAD; LD). This study includes 15-d experimental period and 30-d adaption period. Results: The DCAD level did not affect the rumen fermentation parameters including pH, buffering capability, acetic acid, propionic acid, butyric acid, total volatile fatty acids, and ratio of acetic acid/propionic acid (P > 0.05). The 4 main ruminal cellulolytic bacteria populations including Fibrobacter succinogenes, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens and Ruminococcus albus did not differ from DCAD treatments (P > 0.05). The DCAD levels did not affect bacterial richness and diversity indicated by the indices Chao, Ace and Simpson and Shannon, respectively (P > 0.05). Both weighted UniFrac and unweighted UniFrac showed no difference in the composition of rumen microbiota for CON, HD and LD (P > 0.05). At the phylum level, Bacteroidetes was the predominant phylum followed by Firmicutes, Synergistetes, Proteobacteria, Spirochaetae, and Tenericutes, and they showed no difference (P > 0.05) in relative abundances except for Firmicutes, which was higher in HD and LD compared to CON (P < 0.05). At the genus level, relative abundance of 11 genera were not affected by DCAD treatments (P > 0.05). Level of DCAD had no effect (P > 0.05) on growth performance including dry matter intake, average net gain, average daily gain, and feed conversion ratio; and nutrients digestibility of crude protein, neutral detergent fiber, acid detergent fiber, and organic matter (P > 0.05). Urine pH in LD was lower than HD and CON (P < 0.05). LD resulted in higher plasma calcium than HD and CON (P < 0.05) but not for other plasma metabolites (P > 0.05). Conclusion: We conclude that, with regard to the great importance of rumen fermentation, these results suggest that reducing DCAD is unharmful for rumen status and provide the feasibility of feeding a low-DCAD to goats.


1982 ◽  
Vol 54 (2) ◽  
pp. 127-135
Author(s):  
Liisa Syrjälä-Qvist

The criteria used in comparing the utilization of grass silage by reindeer and sheep were rumen pH, ammonia, volatile fatty acids (VFA) and microbes. Rumen samples were taken before feeding, and 2 ½ and 5 ½ hours after the beginning of feeding. Rumen fermentation was lower in the reindeer than in the sheep and differed less between the three sampling times. In the reindeer/the pH of the rumen fluid averaged 6.94 and in the sheep 6.61. The average amounts of NH3—N were 17.0 and 24.2 mg/100 ml rumen fluid and those of total VFA 8.46 and 10.90 mmoles/100ml rumen fluid, respectively. The proportion of acetic acid in the VFA in the reindeer was 75.3 molar % and in the sheep 66.0 molar %, the corresponding values for propionic acid being 18.5 and 22.0 molar % and for butytic acid 4.2 and 8.8 molar %. The number of rumen ciliates in the reindeer averaged 87/mm3 rumen contents and in the sheep 314/ mm3. The numbers of bacteria were 16.0 X 106/mm3, respectively. The proportion of the total microbe mass in the reindeer rumen contents was 1.8 % and in the sheep 2.4 %. The proportions of bacteria in this mass were 87 % and 70 %, respectively. The differences between the reindeer and sheep in the rumen fermentation results and in the numbers of rumen microbiota were nearly all statistically significant (P


1951 ◽  
Vol 28 (1) ◽  
pp. 74-82
Author(s):  
F. V. GRAY ◽  
A. F. PILGRIM ◽  
R. A. WELLER

1. When wheaten hay and lucerne hay were fermented by organisms from the rumen of the sheep it was necessary to employ a large inoculum of rumen fluid in order to reproduce the rumen fermentation in vitro. With a small inoculum the fermentation did not conform to the known characteristics of the natural process. 2. Products per kilogram of wheaten hay fermented in vitro were: fatty acids 200-250 g.--acetic acid 41%, propionic acid 43% and butyric acid 16% (by weight); methane 15 l. Products per kilogram of lucerne hay were: fatty acids 250-300 g.--acetic acid 53%, propionic acid 29% and butyric acid 18% (by weight); methane 20 l. 3. The findings support the view that, owing to the more rapid absorption of propionic than of the other acids from the rumen, the proportion of this acid remaining in the rumen fluid is considerably less than the proportion actually formed in the fermentation.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruiling Gao ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Wenjun Bao ◽  
Shikun Cheng ◽  
...  

Abstract Background Volatile fatty acids (VFAs) can be effective and promising alternate carbon sources for microbial lipid production by a few oleaginous yeasts. However, the severe inhibitory effect of high-content (> 10 g/L) VFAs on these yeasts has impeded the production of high lipid yields and their large-scale application. Slightly acidic conditions have been commonly adopted because they have been considered favorable to oleaginous yeast cultivation. However, the acidic pH environment further aggravates this inhibition because VFAs appear largely in an undissociated form under this condition. Alkaline conditions likely alleviate the severe inhibition of high-content VFAs by significantly increasing the dissociation degree of VFAs. This hypothesis should be verified through a systematic research. Results The combined effects of high acetic acid concentrations and alkaline conditions on VFA utilization, cell growth, and lipid accumulation of Yarrowia lipolytica were systematically investigated through batch cultures of Y. lipolytica by using high concentrations (30–110 g/L) of acetic acid as a carbon source at an initial pH ranging from 6 to 10. An initial pH of 8 was determined as optimal. The highest biomass and lipid production (37.14 and 10.11 g/L) were obtained with 70 g/L acetic acid, whereas cultures with > 70 g/L acetic acid had decreased biomass and lipid yield due to excessive anion accumulation. Feasibilities on high-content propionic acid, butyric acid, and mixed VFAs were compared and evaluated. Results indicated that YX/S and YL/S of cultures on butyric acid (0.570, 0.144) were comparable with those on acetic acid (0.578, 0.160) under alkaline conditions. The performance on propionic acid was much inferior to that on other acids. Mixed VFAs were more beneficial to fast adaptation and lipid production than single types of VFA. Furthermore, cultures on food waste (FW) and fruit and vegetable waste (FVW) fermentate were carried out and lipid production was effectively improved under this alkaline condition. The highest biomass and lipid production on FW fermentate reached 14.65 g/L (YX/S: 0.414) and 3.20 g/L (YL/S: 0.091) with a lipid content of 21.86%, respectively. By comparison, the highest biomass and lipid production on FVW fermentate were 11.84 g/L (YX/S: 0.534) and 3.08 g/L (YL/S: 0.139), respectively, with a lipid content of 26.02%. Conclusions This study assumed and verified that alkaline conditions (optimal pH 8) could effectively alleviate the lethal effect of high-content VFA on Y. lipolytica and significantly improve biomass and lipid production. These results could provide a new cultivation strategy to achieve simple utilizations of high-content VFAs and increase lipid production. Feasibilities on FW and FVW-derived VFAs were evaluated, and meaningful information was provided for practical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qian Fang ◽  
Sinmin Ji ◽  
Dingwu Huang ◽  
Zhouyue Huang ◽  
Zilong Huang ◽  
...  

This study explores the use of alkaline pretreatments to improve the hydrolyzation of rice husks to produce volatile fatty acids (VFAs). The study investigated the effects of reagent concentration and pretreatment time on protein, carbohydrates, and dissolved chemical oxygen demand (SCOD) dissolution after the pretreatment. The optimum alkaline pretreatment conditions were 0.30 g NaOH (g VS)−1, with a reaction time of 48 h. The experimental results show that when comparing the total VFA (TVFA) yields from the alkaline-pretreated risk husk with those from the untreated rice husk, over 14 d and 2 d, the maximum value reached 1237.7 and 716.0 mg·L−1 with acetic acid and propionic acid and with acetic acid and butyric acid, respectively. After the alkaline pretreatment, TVFAs increased by 72.9%; VFA accumulation grew over time. The study found that alkaline pretreatment can improve VFA yields from rice husks and transform butyric acid fermentation into propionic acid fermentation. The study results can provide guidelines to support the comprehensive utilization of rice husk and waste treatment.


1951 ◽  
Vol 2 (1) ◽  
pp. 92 ◽  
Author(s):  
GL McClymont

Volatile fatty acid isolated from nine samples of peripheral blood from four cows contained, on a molecular basis, from 90.0 to 97.0 per cent. of acetic acid (mean 93.3 per cent.). The remainder comprised, as mean values, propionic acid, 2.39 per cent.; butyric acid, 2.61 per cent.; and a group of at least three acids between butyric and octanoic, 1.84 per cent. The significance of the high proportion of acetic acid in the volatile fatty acid of bovine peripheral blood is discussed. Only traces of esterified acids lower than octanoic could be found in bovine blood lipides. Volatile fatty acids were found also in the blood of the rabbit, guinea pig, horse, and pig and in human plasma. Here again a high proportion of acetic acid was recorded. Volatile fatty acid isolated from nine samples of ruminal contents from two cows contained on a molecular basis from 52.3 to 69.0 per cent. of acetic acid (mean 60.0 per cent.). The remainder comprised, as mean values, propionic acid, 21.8 per cent.; butyric acid, 14.4 per cent.; and acids higher than butyric (apparently largely valeric and hesanoic), 3.8 per cent. This limited number of analyses indicated no gross effect of type of feed on the proportion of the acids in the rumen.


2018 ◽  
Vol 39 (1) ◽  
pp. 253
Author(s):  
Marcos Rogério Oliveira ◽  
Antônio Vinícius Iank Bueno ◽  
Guilherme Fernando Mattos Leão ◽  
Mikael Neumann ◽  
Clóves Cabreira Jobim

We aimed to evaluate nutritional quality, fermentation profile, aerobic stability, and dry matter losses in corn (Zea mays) and wheat (Triticum aestivum 'BRS Umbu') silages. Treatments included uninoculated and inoculated (Lactobacillus plantarum and Pediococcus acidilactici, 1.0 × 105 UFC g-1) wheat silage, corn silage from a conventional hybrid and a transgenic hybrid. Nutritional quality and fermentation profile variables were tested in a completely randomized design. Means were compared using Tukey’s test at 5% significance. An aerobic stability trial was conducted in a factorial design with two silages (wheat × inoculated wheat; conventional hybrid corn × transgenic hybrid corn) and two temperatures (ambient temperature × controlled temperature at 24°C). Data were submitted to ANOVA and means were analyzed by the F test at 5% probability. Inoculation of wheat silage increased dry matter, organic matter, and total carbohydrates, but reduced crude protein by a dilution effect. Regarding the fermentation profile, inoculation reduced acetic acid and butyric acid content, whereas it increased propionic acid in wheat silage. Bt corn hybrid silage showed higher dry matter and lower neutral detergent fiber, whereas transgenic corn silage showed lower content of acetic acid, propionic acid, alcohol, and ammonia. Conversely, Bt hybrid silage showed higher butyric acid. Transgenic corn silage showed higher temperature than the conventional hybrid silage during aerobic exposure. Inoculated wheat silage experienced larger deterioration and dry matter losses during the aerobic stability trial. Temperature control worsened aerobic stability in all treatments, increasing dry matter losses and heating.


1986 ◽  
Vol 56 (1) ◽  
pp. 181-192 ◽  
Author(s):  
J. D. Sutton ◽  
I. C. Hart ◽  
W. H. Brosters ◽  
Rosemary J. Elliott ◽  
E. Schuller

1. The present paper reports the effects on rumen fermentation and plasma metabolites and hormones of giving fixed rations of hay and high-cereal concentrates at different meal frequencies to lactating cows. In Expt 1 the total ration was given in two and twenty-four meals daily and in Expts 2–4 the concentrates were given in two and five or six meals and the hay in two meals daily. The diets contained 600–920 g concentrates/kg.2. In Expt I, minimum rumen pH was higher but mean pH was lower when cows were given their ration in twenty-four meals/d rather than two meals/d.3. In all the experiments, the effects of increased meal frequency on the molar proportions of rumen volatile fatty acids (VFA) were small and not significant, although there was a general tendency for the proportion of acetic acid to increase and that of propionic acid to fall. Increasing the proportion of concentrates in the diet reduced the proportion of acetic acid and increased the proportions of propionic and n-valeric acids.4. In Expt 3, more frequent feeding was found to reduce the concentration of non-esterified fatty acids in the blood, but changes in other metabolites were small and not significant. Increasing the proportion of concentrates in the diet reduced the concentrations of acetic acid and 3-hydroxybutyric acid and increased the concentrations of propionic acid and glucose.5. The mean daily concentration of insulin in the blood was reduced by more frequent feeding of the higher-concentrate diet but not of the lower-concentrate diet. The concentration of glucagon also tended to fall with more frequent feeding. Increasing the proportion of concentrates in the diet increased the concentration of insulin.6. More frequent feeding reduced the depression in milk-fat concentration caused by feeding the low-roughage diets. About three-quarters of the variation in milk-fat concentration could be related to changes in rumen VFA proportions, but the relations for the two meal frequencies had different intercepts although similar curves. The results suggest that milk-fat depression on low-roughage diets with twice-daily feeding was due to a change in rumen VFA proportions accompanied by elevated plasma insulin concentrations. The improvement in milk-fat concentration due to more frequent feeding could be explained partly by the small change in rumen VFA proportions and partly by a reduction in mean plasma insulin concentrations, but these mechanisms did not fully account for the milk-fat responses observed.


Sign in / Sign up

Export Citation Format

Share Document