scholarly journals Population Genetic Structure Analysis Reveals Decreased but Moderate Diversity for the Oriental Fire-Bellied Toad Introduced to Beijing after 90 Years of Independent Evolution

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1429
Author(s):  
Yang Teng ◽  
Jing Yang ◽  
Guofen Zhu ◽  
Fuli Gao ◽  
Yingying Han ◽  
...  

Detailed molecular genetic research on amphibian populations has a significant role in understanding the genetic adaptability to local environments. The oriental fire-bellied toads (Bombina orientalis) were artificially introduced to Beijing from Shandong Province in 1927, and since then, this separated population went through an independent evolution. To explore the differentiation of the introduced population with its original population, this study analyzed the genetic structure of the oriental fire-bellied toad, based on the mitochondrial genome control region and six microsatellite sites. The results showed that the haplotype diversity and nucleotide diversity of the mitochondrial D-loop region partial sequences of the Beijing Botanical Garden population and the Baiwangshan population were lower than those of the Shangdong Kunyushan population. Microsatellite marker analysis also showed that the observed heterozygosity and expected heterozygosity of the Beijing populations were lower than those of the Kunyushan population. The phylogenetic trees and network diagrams of haplotypes indicated that the three populations were not genetically separated. However, the structure analysis showed a genetic differentiation and categorized the sampling individuals into Beijing and Shandong genetic clusters, which indicated a tendency for isolated evolution in the Beijing population. Although the Beijing populations showed a decline in genetic diversity, it was still at a moderate level, which could maintain the survival of the population. Thus, there is no need to reintroduce new individuals from the Kunyushan source population.

2019 ◽  
Vol 20 (9) ◽  
Author(s):  
KAYAL VIZI KARUPPANNAN ◽  
NOR AIFAT RAHMAN ◽  
KHAIRUL AMIRIN MOHAMED ◽  
NURUL FARAH DIYANA AHMAD TAHIR ◽  
FATIN MARDHIAH NORDIN ◽  
...  

Abstract. Karuppannan KV, Aifat NR, Mohamed KA,  Ahmad-Tahir NFD,  Nordin FM, Yaakop S, Maldonado JE, Md-Zain BM. 2019. Genetic variations among selected wild Asian elephant populations in Peninsular Malaysia based on mitochondrial D-loop region DNA sequences. Biodiversitas 20: 2494-2502. Asian elephant (Elephas maximus) is an important large mammal in Peninsular Malaysia and is completely protected by the Wildlife Conservation Act 2010 (Act 716). The conservation of this species requires strong information-based research, such as genetic evaluations. The aim of this study was to compare mitochondrial control region variation among selected elephants from the Taman Negara National Parks (TNNP) population with other selected populations in Peninsular Malaysia. DNA materials were extracted from fecal samples and amplified using partial mitochondrial D-loop region. Total 13 haplotypes with haplotype diversity (Hd) of 0.7524 were observed. A total of 34 base pair (bp) segregation sites were formed in 547 bp sequences. Both phylogenetic trees showed that a few individual elephants from the TNNP formed a clade together with individuals from other populations. The remaining individual elephants from TNNP formed a monophyletic clade supported by a high bootstrap value. Low genetic distance was detected among the tested populations, which proved that both individuals from the TNNP and other selected populations have similar genetic patterns. High gene flow among tested populations would impact on fitness and long-term resilience of the populations. This highly significant outcome provides strong baseline data for Department of Wildlife and National Parks (DWNP) in monitoring elephant populations in order to reduce number of human-elephant conflicts which indirectly minimize translocating conflict elephants to TNNP.


2020 ◽  
Vol 48 (2) ◽  
pp. 572-587
Author(s):  
Wenting XU ◽  
Miao ZHANG ◽  
Chen WANG ◽  
Xiongzhen LOU ◽  
Xiao HAN ◽  
...  

Phoebe bournei, a plant species endemic to China, is a precious timber tree and widely used in landscaping. This tree contains numerous secondary metabolites, underscoring its potential economic value. However, studies on this species, including molecular genetic research, remain limited. In this study, both a somatic embryogenesis (SE) technical system and Agrobacterium-mediated genetic transformation were successfully employed in P. bournei for the first time. The SE technical system was constructed using immature embryos as original material. The primary embryo and embryonic callus induction rates were 30.66% and 41.67%, respectively. The highest rate of embryonic callus proliferation was 3.84. The maximum maturity coefficient and germination rate were 53.44/g and 39%, respectively. Agrobacterium-mediated genetic transformation was performed using the SE technical system, and the highest transformation rate was 11.24%. The results presented here are the first to demonstrate an efficient approach to achieve numerous P. bournei plantlets, which serves as the basis for artificial cultivation and resource conservation. Furthermore, the genetic transformation platform constructed in this study will facilitate assessment of gene function and molecular regulation.


2011 ◽  
Vol 102 (3) ◽  
pp. 333-343 ◽  
Author(s):  
K.C. Albernaz ◽  
K.L. Silva-Brandão ◽  
P. Fresia ◽  
F.L. Cônsoli ◽  
C. Omoto

AbstractIntra- and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton- and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's FS parameters. In addition, high values of haplotype diversity (Ĥ) and low values of nucleotide diversity (π), combined with a high number of low frequency haplotypes and values of θπ<θW, suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.


Human Biology ◽  
2006 ◽  
Vol 78 (5) ◽  
pp. 551-563 ◽  
Author(s):  
Rebeca. Campos-Sánchez ◽  
Ramiro. Barrantes ◽  
Sandra Honorato da. Silva ◽  
Michael. Escamilla ◽  
Alfonso. Ontiveros ◽  
...  

Author(s):  
Irina Mikhailovna Donnik ◽  
Maksim Valeryevich Petropavlovsky ◽  
Anna Sergeevna Krivonogova ◽  
Irina Alekseevna Shkuratova ◽  
Marzena Rola-Łuszczak ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Florina Erbeli ◽  
Marianne Rice ◽  
Silvia Paracchini

Dyslexia, a specific reading disability, is a common (up to 10% of children) and highly heritable (~70%) neurodevelopmental disorder. Behavioral and molecular genetic approaches are aimed towards dissecting its significant genetic component. In the proposed review, we will summarize advances in twin and molecular genetic research from the past 20 years. First, we will briefly outline the clinical and educational presentation and epidemiology of dyslexia. Next, we will summarize results from twin studies, followed by molecular genetic research (e.g., genome-wide association studies (GWASs)). In particular, we will highlight converging key insights from genetic research. (1) Dyslexia is a highly polygenic neurodevelopmental disorder with a complex genetic architecture. (2) Dyslexia categories share a large proportion of genetics with continuously distributed measures of reading skills, with shared genetic risks also seen across development. (3) Dyslexia genetic risks are shared with those implicated in many other neurodevelopmental disorders (e.g., developmental language disorder and dyscalculia). Finally, we will discuss the implications and future directions. As the diversity of genetic studies continues to increase through international collaborate efforts, we will highlight the challenges in advances of genetics discoveries in this field.


2018 ◽  
Vol 6 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Irina Donnik ◽  
Irina Donnik ◽  
Ramil Vafin ◽  
Ramil Vafin ◽  
Aram Galstyan ◽  
...  

Molecular genetic research methods make it possible to evaluate the genetic diversity of bovine leukemia virus (BLV) and are the most informative approaches to its genetic identification. Molecular genetic research methods work well for the phylogenetic analysis of sequenced nucleotide DNA sequences of the provirus, as well as for the polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) according to the phylogenetic classification of the pathogen. The purpose of the research was to study the scientific and methodological approaches to the genetic identification of bovine leukemia virus, integrated into the molecular monitoring of infection of cattle with BLV genotypes. The authors used PCR-RFLP-genotyping and comparative phylogenetic analysis of aligned nucleotide sequences of the env gene fragment of the BLV provirus isolates to detect the genotypic affiliation of the cattle from twenty-one livestock farms of the Republic of Tatarstan. As a result, isolates of four out of ten BLV genotypes were found in the Tatarstani cattle, namely genotypes 1, 4, 7, and 8. The research involved a comparative analysis of 505 nucleotide sequences of a fragment of the BLV env gene, including those deposited in GenBank NCBI. The analysis confirms the inconsistency of several earlier PCR-RFLP typing strategies with the current approach in assessing the genotypic diversity by phylogenetic analysis. The improved strategy of PCR-RFLP genotyping of BLV corresponds with its modern phylogenetic classification. The strategy makes it possible to identify all the known genotypes of the viral pathogen. Its validity has been proved by in silico modelling of restrictogrammes and a phylogenetic analysis of the env gene fragment of 57 reference isolates of ten BLV genotypes that generate 57 genotype-associated combinations of diagnostically significant PCR-RFLP profiles.


Author(s):  
Vladimir E. Padutov

Pedunculate oak (Quercus robur L.) is one of the main forest forming species in the Republic of Belarus. Its population genetic structure was formed under the influence of various migration processes. Six chloroplast DNA loci (µdt1, µdt3, µdt4, µcd4, µcd5 and µkk4) were used for the genogeographic study. The material for the analysis was collected in 100 oak forest stands (2325 samples); 18 allelic variants were identified, which are grouped into 17 different combinations (haplotypes). Five of them are widespread (the proportion of occurrence varies from 7 to 48 %, totalling 85 %). The remaining 12 are rare (the proportion of occurrence varies from 1 to 3 %, totalling 15 %). Phylogenetic trees constructed using the nearest neighbour and maximum likelihood methods show the presence of two groups (branches) of haplotypes. One of it comprises 8 variants including 2 dominant haplotypes and the other comprises 9 variants including 3 dominant haplotypes. PCR-RFLP analysis of chloroplast DNA showed that the pedunculate oak in Belarus originates from the Balkan refugium. Haplotype No. 1 (µdt189, µdt3123, µdt4142, µcd494, µcd574, µkk4109) is found almost everywhere in Belarus with the exception of the southwest and northeast, while haplotype No. 8 (µdt189, µdt3121, µdt4142, µcd494, µcd574, µkk4109) is mainly localised in the southwest and northeast. Haplotypes No. 3 (µdt189, µdt3120, µdt4141, µcd494, µcd575, µkk4109) and No. 7 (µdt189, µdt3122, µdt4142, µcd494, µcd574, µkk4109) predominantly found in the west of the country. Haplotype No. 2 (µdt190, µdt3120, µdt4141, µcd495, µcd574, µkk4109) is typical for the southeast.


Sign in / Sign up

Export Citation Format

Share Document