scholarly journals Post-prandial Amino Acid Changes in Gilthead Sea Bream

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1889
Author(s):  
Eleni Mente ◽  
Chris G. Carter ◽  
Robin S. (Katersky) Barnes ◽  
Nikolaos Vlahos ◽  
Ioannis Nengas

Following a meal, a series of physiological changes occurs in fish as they digest, absorb and assimilate ingested nutrients. This study aims to assess post-prandial free amino acid (FAA) activity in gilthead sea bream consuming a partial marine protein (fishmeal) replacement. Sea bream were fed diets where 16 and 27% of the fishmeal protein was replaced by plant protein. The essential amino acid (EAA) composition of the white muscle, liver and gut of sea bream was strongly correlated with the EAA composition of the 16% protein replacement diet compared to the 27% protein replacement diet. The mean FAA concentration in the white muscle and liver changed at 4 to 8 h after a meal and was not different to pre-feeding (0 h) and at 24 h after feeding. It was confirmed in this study that 16% replacement of marine protein with plant protein meets the amino acid needs of sea bream. Overall, the present study contributes towards understanding post-prandial amino acid profiles during uptake, tissue assimilation and immediate metabolic processing of amino acids in sea bream consuming a partial marine protein replacement. This study suggests the need to further investigate the magnitude of the post-prandial tissue-specific amino acid activity in relation to species-specific abilities to regulate metabolism due to dietary nutrient utilization.

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 101 ◽  
Author(s):  
Mirian Pateiro ◽  
Paulo E. S. Munekata ◽  
Rubén Domínguez ◽  
Min Wang ◽  
Francisco J. Barba ◽  
...  

Fish processing industries generate a large volume of discards. In order to fulfil with the principles of a sustainable circular economy, it is necessary to maintain aquaculture by-products in the food chain through the production of high-value biomolecules that can be used as novel ingredients. In this study, we try to give value to the gilthead sea bream by-products, evaluating the composition and the nutritional value of the muscle and six discards commonly obtained from the fish processing industry (fishbone, gills, guts, heads, liver, and skin), which represent ≈ 61% of the whole fish. Significant differences were detected among muscle and by-products for fatty acid and amino acid profile, as well as mineral content. The discards studied were rich in protein (10%–25%), showing skin and fishbone to have the highest contents. The amino acid profile reflected the high quality of its protein, with 41%–49% being essential amino acids—lysine, leucine, and arginine were the most abundant amino acids. Guts, liver, and skin were the fattiest by-products (25%–35%). High contents of polyunsaturated fatty acids (PUFAs) (31%–34%), n-3 fatty acids (12%–14%), and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (6%–8%) characterized these discards. The head displayed by far the highest ash content (9.14%), which was reflected in the mineral content, especially in calcium and phosphorous. These results revealed that gilthead sea bream by-products can be used as source of value-added products such as protein, oils, and mineral supplements.


2007 ◽  
Vol 38 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Silvia Martínez-Llorens ◽  
Ana Tomás Vidal ◽  
Andrés Vicente Moñino ◽  
Marcial Pla Torres ◽  
Miguel Jover Cerdá

2007 ◽  
Vol 38 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Silvia Martínez-Llorens ◽  
Andrés Vicente Moñino ◽  
Ana Tomás Vidal ◽  
Vicente Javier Moya Salvador ◽  
Marcial Pla Torres ◽  
...  

2019 ◽  
Author(s):  
Jaume Pérez-Sánchez ◽  
Fernando Naya-Català ◽  
Beatriz Soriano ◽  
M. Carla Piazzon ◽  
Ahmed Hafez ◽  
...  

AbstractGilthead sea bream is an economically important fish species that is remarkably well-adapted to farming and changing environments. Understanding the genomic basis of this plasticity will serve to orientate domestication and selective breeding towards more robust and efficient fish. To address this goal, a draft genome assembly was reconstructed combining short- and long-read high-throughput sequencing with genetic linkage maps. The assembled unmasked genome spans 1.24 Gb of an expected 1.59 Gb genome size with 932 scaffolds (∼732 Mb) anchored to 24 chromosomes that are available as a karyotype browser at www.nutrigroup-iats.org/seabreambrowser. Homology-based functional annotation, supported by RNA-seq transcripts, identified 55,423 actively transcribed genes corresponding to 21,275 unique descriptions with more than 55% of duplicated genes. The mobilome accounts for the 75% of the full genome size and it is mostly constituted by introns (599 Mb), whereas the rest is represented by low complexity repeats, RNA retrotransposons, DNA transposons and non-coding RNAs. This mobilome also contains a large number of chimeric/composite genes (i. e. loci presenting fragments or exons mostly surrounded by LINEs and Tc1/mariner DNA transposons), whose analysis revealed an enrichment in immune-related functions and processes. Analysis of synteny and gene phylogenies uncovered a high rate of species-specific duplications, resulting from recent independent duplications rather than from genome polyploidization (2.024 duplications per gene; 0.385 excluding gene expansions). These species-specific duplications were enriched in gene families functionally related to genome transposition, immune response and sensory responses. Additionally, transcriptional analysis of liver, skeletal muscle, intestine, gills and spleen supported a high number of functionally specialized paralogs under tissue-exclusive regulation. Altogether, these findings suggest a role of recent large-scale gene duplications coupled to tissue expression diversification in the evolution of gilthead sea bream genome during its successful adaptation to a changing and pathogen-rich environment. This issue also underscores a role of evolutionary routes for rapid increase of the gene repertoire in teleost fish that are independent of polyploidization. Since gilthead sea bream has a well-recognized plasticity, the current study will advance our understanding of fish biology and how organisms of this taxon interact with the environment.


Fishes ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 15
Author(s):  
Patricia Zaragozá ◽  
Silvia Martínez-Llorens ◽  
Isabel Fernández-Segovia ◽  
José-Luis Vivancos ◽  
Ana Tomas-Vidal ◽  
...  

In this work the effect of partial or total replacement of fishmeal by plant protein sources and krill and squid meal on growth performance and shelf-life of gilthead sea bream was evaluated. Plant protein dietswith 50 g kg−1 of krill and 100 g kg−1 of squid were supplemented with synthetic amino acidsand at the end of the growing period weight showed no significant differences. The spoilage process of the fish was followed by physicochemical and microbiological measurements together with a colorimetric sensor array (CSA) specially designed for that purpose. The changes in the physicochemical parameters and microbial growth showed that shelf-life of samples were in all cases lower than ninedays. The CSA was not able to show significant differences between both diets, confirming the physicochemical and microbiological results. The fact that the type of feed had no effect on the freshness parameters studied demonstrates that total fishmeal replacement with plant protein blends in the proportions used in this work could be an excellent alternative for feed formulation in aquaculture.


Sign in / Sign up

Export Citation Format

Share Document