scholarly journals Annual Long-Distance Migration Strategies and Home Range of Chinese Sparrowhawk (Accipiter soloensis) from South China

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2237
Author(s):  
Xiao Min ◽  
Zijing Gao ◽  
Yuanfeng Lin ◽  
Chang-Hu Lu

From 2018 to 2019, two Chinese Sparrowhawks (Bird 01, male; Bird 02, female), Accipiter soloensis, were captured and fitted with Global Positioning System (GPS) loggers in order to identify summering and wintering sites, migration routes, and stop-over sites. The Chinese Sparrowhawks were first fitted with backpack solar GPS satellite trackers in China in order to explore their migration routes. The two Chinese Sparrowhawks successfully completed their migration from southern China, through Nanning city of Guangxi province, China, to Vietnam, Laos, Myanmar, Thailand, Malaysia, and Singapore and finally arriving in Indonesia, where they stayed until the March of the following year. They then returned to China along the original route, arriving in Changsha city, Hunan province, China. The two individuals traveled more than 4000–5000 km. For the first time, telemetry data demonstrate, the linkages between their Indonesia wintering sites, their stop-over sites in Southeast Asia, and their breeding/summering sites near south Yangtze River in the south-central part of China. During this long-distance migration, 2653 bird satellite sites were received. The autumn migration durations for the two Chinese Sparrowhawks were 84 days and 50 days, respectively, compared to 83 days and 49 days in spring. The median stop-over duration was 12.7 and 9.3 days, respectively and the median speed of travel was 74.2 km/day during the autumn migration and 73.9 km/day during the spring migration. Furthermore, two and one stop-over sites and one and three stop-over sites were used during the autumn and spring migrations of Chinese Sparrowhawks 01 and 02, respectively. The Chinese Sparrowhawks migrated long distances and used stop-over sites during their migration. Based on the home range analysis, we can conclude that Chinese Sparrowhawks reach their maximum home range in the summer and have multiple nuclear domains.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4353 ◽  
Author(s):  
Xin Wang ◽  
Lei Cao ◽  
Inga Bysykatova ◽  
Zhenggang Xu ◽  
Sonia Rozenfeld ◽  
...  

The degree of inhospitable terrain encountered by migrating birds can dramatically affect migration strategies and their evolution as well as influence the way we develop our contemporary flyway conservation responses to protect them. We used telemetry data from 44 tagged individuals of four large-bodied, Arctic breeding waterbird species (two geese, a swan and one crane species) to show for the first time that these birds fly non-stop over the Far East taiga forest, despite their differing ecologies and migration routes. This implies a lack of suitable taiga refuelling habitats for these long-distance migrants. These results underline the extreme importance of northeast China spring staging habitats and of Arctic areas prior to departure in autumn to enable birds to clear this inhospitable biome, confirming the need for adequate site safeguard to protect these populations throughout their annual cycle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhijun Huang ◽  
Xiaoping Zhou ◽  
Wenzhen Fang ◽  
Hailong Zhang ◽  
Xiaolin Chen

Abstract Background The vulnerable Chinese Egret (Egretta eulophotes) is a long-distance migratory waterbird whose migration and wintering information is poorly understood. This study aims to identify the autumn migration routes and wintering areas of juvenile Chinese Egrets and determine the migration movement traits of this species. Methods Thirty-nine juvenile Chinese Egrets from the Fantuozi Island, an uninhabited offshore island with a large breeding colony of Chinese Egrets in Dalian, China, were tracked using GPS/GSM transmitters. Some feathers from each tracked juvenile were collected for molecular identification of sex in the laboratory. The GPS locations, recorded at 2-h intervals from August 2018 to May 2020, were used for the analyses. Results Of the 39 tracked juveniles, 30 individuals began their migration between September and November, and 13 successfully completed their autumn migration between October and November. The juveniles migrated southward via three migration routes, coastal, oceanic and inland, mainly during the night. The migration duration, migration distance, flight speed, and stopover duration of the 13 juvenile egrets that completed migration averaged 5.08 ± 1.04 days, 3928.18 ± 414.27 km, 57.27 ± 5.73 km/h, and 23.08 ± 19.28 h, respectively. These juveniles wintered in the coastal wetlands of Southeast Asia including those in the Philippines, Vietnam, and Malaysia, and only one successfully began its spring migration in June 2020. Conclusions This study newly finds that the oceanic route taken by juvenile Chinese Egrets, suggesting that the juveniles are able to fly over the Pacific Ocean without a stopover. Moreover, our novel data indicate that coastal wetlands along the East Asian–Australasian Flyway are important areas for both autumn migration stopover and the wintering of these juveniles, suggesting that international cooperation is important to conserve the vulnerable Chinese Egret and the wetland habitats on which it depends.


Author(s):  
Cătălin-Răzvan Stanciu ◽  
Răzvan Zaharia ◽  
Gabriel-Bogdan Chişamera ◽  
Ioana Cobzaru ◽  
Viorel-Dumitru Gavril ◽  
...  

Abstract We studied various aspects regarding migration behavior of the Common Buzzard for two subspecies (B. b. buteo and B. b. vulpinus) transiting the region which overlaps with the Western Black Sea Corridor. Using vantage points set across Dobruja we managed to count 2,662 individuals. We highlighted the seasonal and diurnal peak passage, flight directions and height of flight for each season. Our results suggest that 57% of the counted individuals belongs to long-distance migrant Steppe Buzzard - B. b. vulpinus. The peek passage period in autumn migration was reached between the 26th of September to the 6th of October, while for the spring migration peek passage remained uncertain. The main autumn passage direction was from N to S, and NNW to SSE but also from NE to SW. For spring passage the main direction was from S to N but also from ESE to WNW. Flight height during autumn migration was mostly at high altitude while in spring migration was more evenly distributed. The most significant activity was recorded in the second time period, between 10:01 and 13:00 (43%).


Author(s):  
Jorge García-Macía ◽  
Javier Vidal-Mateo ◽  
Javier De La Puente ◽  
Ana Bermejo ◽  
Rainer Raab ◽  
...  

AbstractRed Kite shows a great variability in its migration strategies: most individuals in north-eastern Europe are migrants, but there is also a growing number of sedentary individuals. Here, we tagged 49 Red Kites wintering in Spain with GPS/satellite transmitters between 2013 and 2020 to study the autumn and spring migration between the breeding or summering areas in Central Europe and the wintering quarters in Spain. In first place, differences between immatures and adults were found for spring migration. Adults began the spring migration towards the northeast in February–March while the immature individuals began to migrate significantly later and showing a wider date range (February-June). Adults also takes significantly less days to arrive at their destinations (12 ± 5 days) and cover more distance per day (134.2 ± 37.1 km/day) than immatures (19 ± 11 days and 98.9 ± 21.2 km/day). In second place, we also found differences between spring and autumn migration (excluding immatures). Spring migrations were clearly faster and with less stopovers days than autumn migrations. Autumn migration began between mid-October and late November and two different behaviours were observed: most birds made a quick migration direct to the wintering areas with only some days of stopovers, but others prolonged the migration with long stops along the route. These results highlight a great variation in the migratory movements of Red Kite, not only according to age but also between individuals and seasons.


2020 ◽  
Vol 7 (1) ◽  
pp. 19-26
Author(s):  
Clayton D Delancey ◽  
Kamal Islam ◽  
Gunnar R Kramer ◽  
Garrett J MacDonald ◽  
Alexander R Sharp ◽  
...  

AbstractCerulean Warblers (Setophaga cerulea) are among the fastest declining Nearctic-Neotropical migrant wood-warblers (Parulidae) in North America. Despite ongoing conservation efforts, little is known about their non-breeding distribution. In June 2016-2018, we deployed geolocators (n = 30) on adult male Cerulean Warblers in Indiana, USA, to track annual movements of individuals. Recovered geolocators (n = 4) showed that Cerulean Warblers occurred broadly throughout northern South America. Autumn migration lasted 44-71 days (n = 4), whereas spring migration lasted 37-41 days (n = 3). The average migration distance was 5268 km. During autumn migration, Cerulean Warblers made 1-4 stopovers (i.e., ≥2 days; n = 4) and 1-2 stopovers during spring migration (n = 3). When crossing the Gulf of Mexico during autumn migration, two birds stopped over after crossing, but not beforehand. Two others navigated through the Caribbean rather than crossing the Gulf of Mexico. During spring migration, one individual stopped after crossing, one individual stopped before crossing, and one individual stopped before and after crossing the Gulf of Mexico. No birds migrated through the Caribbean Islands during spring migration. These results represent novel information describing annual movements of individual Cerulean Warblers and will inform conservation efforts for this declining species.


2014 ◽  
Vol 11 (99) ◽  
pp. 20140542 ◽  
Author(s):  
Nathan F. Putman ◽  
Erica S. Jenkins ◽  
Catherine G. J. Michielsens ◽  
David L. G. Noakes

Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye ( Oncorhynchus nerka ) and pink ( Oncorhynchus gorbuscha ) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species.


2017 ◽  
Vol 4 (4) ◽  
pp. 170105 ◽  
Author(s):  
Karen L. Bell ◽  
Haripriya Rangan ◽  
Manuel M. Fernandes ◽  
Christian A. Kull ◽  
Daniel J. Murphy

Acacia s.l. farnesiana , which originates from Mesoamerica, is the most widely distributed Acacia s.l. species across the tropics. It is assumed that the plant was transferred across the Atlantic to southern Europe by Spanish explorers, and then spread across the Old World tropics through a combination of chance long-distance and human-mediated dispersal. Our study uses genetic analysis and information from historical sources to test the relative roles of chance and human-mediated dispersal in its distribution. The results confirm the Mesoamerican origins of the plant and show three patterns of human-mediated dispersal. Samples from Spain showed greater genetic diversity than those from other Old World tropics, suggesting more instances of transatlantic introductions from the Americas to that country than to other parts of Africa and Asia. Individuals from the Philippines matched a population from South Central Mexico and were likely to have been direct, trans-Pacific introductions. Australian samples were genetically unique, indicating that the arrival of the species in the continent was independent of these European colonial activities. This suggests the possibility of pre-European human-mediated dispersal across the Pacific Ocean. These significant findings raise new questions for biogeographic studies that assume chance or transoceanic dispersal for disjunct plant distributions.


Wetlands ◽  
2013 ◽  
Vol 34 (2) ◽  
pp. 255-266 ◽  
Author(s):  
Chiyeung Choi ◽  
Xiaojing Gan ◽  
Ning Hua ◽  
Yong Wang ◽  
Zhijun Ma

Sign in / Sign up

Export Citation Format

Share Document