scholarly journals Genome-Wide Association Study for Milk Fatty Acids in Holstein Cattle Accounting for the DGAT1 Gene Effect

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 997 ◽  
Author(s):  
Valdecy A. R. Cruz ◽  
Hinayah R. Oliveira ◽  
Luiz F. Brito ◽  
Allison Fleming ◽  
Steven Larmer ◽  
...  

The identification of genomic regions and candidate genes associated with milk fatty acids contributes to better understand the underlying biology of these traits and enables breeders to modify milk fat composition through genetic selection. The main objectives of this study were: (1) to perform genome-wide association analyses for five groups of milk fatty acids in Holstein cattle using a high-density (777K) SNP panel; and (2) to compare the results of GWAS accounting (or not) for the DGAT1 gene effect as a covariate in the statistical model. The five groups of milk fatty acids analyzed were: (1) saturated (SFA); (2) unsaturated (UFA); (3) short-chain (SCFA); (4) medium-chain (MCFA); and (5) long-chain (LCFA) fatty acids. When DGAT1 was not fitted as a covariate in the model, significant SNPs and candidate genes were identified on BTA5, BTA6, BTA14, BTA16, and BTA19. When fitting the DGAT1 gene in the model, only the MGST1 and PLBD1 genes were identified. Thus, this study suggests that the DGAT1 gene accounts for most of the variability in milk fatty acid composition and the PLBD1 and MGST1 genes are important additional candidate genes in Holstein cattle.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 245-246
Author(s):  
Alexander A Sermyagin ◽  
Irina Lashneva ◽  
Larisa P Ignatieva ◽  
Alexander Kositsin ◽  
Elena Gladyr ◽  
...  

Abstract Milk fatty acids (FA) derived from infrared spectra are a new type of traits that allow fast and predictability use their in dairy breeding and herd cattle management. The Holstein animals feature are the high milk yield, but milk composition traits can be different according to population or country origin. The purpose of our study was to find out genetic variation for milk FA and detect QTLs associated with Holstein sires’ EBV in Russian cattle population. For this analysis, we used an experimental dataset for 36982 milk test records from 14 breeding herds in the Moscow region. Individual milk samples per animal analyzed routinely by MilkoScan7 for different FA types: C14:0, C16:0, C18:0, C18:1, saturated, mono- and polyunsaturated, short-, medium- and long-chain. Total number of bulls consisted 778 individuals including 222 animals with genotypes (39051 SNP, Illumina 50K). For calculating EBV by Sire Model, we applied BLUPF90. Plink 1.90 performed quality check control and GWAS procedure. Heritability coefficients were 0.071–0.155 for C14:0-C18:0 levels, 0.196 for C18:1, 0.083 for SFA, 0.018 for PUFA, 0.176 for MUFA, 0.114–0.155 for SCFA-LCFA levels. GWAS revealed most significant (P < 0.001-0.00001) frequently QTLs associated with FA content that were cited in articles previously for BTA5 (CHST11,C18:1), BTA6 (KCNIP4,C18:1; PPRAGC1A,C18:0), BTA11 (NRXN1,LPIN1,C18:1; NBAS,C18:0), BTA26 (PCDH15,PUFA; PRKG1,C18:1). These genes were responsible for synthesis milk fat, fertility, udder conformation traits, lauric, myristic, myristoleic, palmatoleic, oleic and other types of FA. In addition, we identified several QTLs for C14:0, C16:0, SFA, MUFA, SCFA, LCFA on BTA1 (137.32 Mb), BTA10 (5.50 Mb, 9.79 Mb), BTA14 (44.35 Mb), BTA19 (17.57–17.89 Mb) and BTA22 (14.02–14.06 Mb, 20.29–20.45 Mb). Our results are the first steps toward to understanding genetic and genomic mechanisms for using FA in selection processes to improve milk quality for Holstein cattle in Russia. The study was funded by RSF (project No. 21-76-20046)


2021 ◽  
Vol 1 (19) ◽  
pp. 352-354
Author(s):  
E.A. Gladyr ◽  
L.P. Ignatieva ◽  
I.A. Lashneva ◽  
A.A. Kositsin ◽  
O.A. Artemieva ◽  
...  

The first results of the genome-wide associations analysis for fatty acids composition in cow milk by Russian Holsteinized Black-and-White and Holstein breeds were obtained. Genomic regions (QTL) associated with milk fat percentage, fatty acids synthesis, functional parameters of linear type for udder and leg traits, fertility features have been detected.


2020 ◽  
Vol 20 (3) ◽  
pp. 825-851
Author(s):  
Ali Mohammadi ◽  
Sadegh Alijani ◽  
Seyed Abbas Rafat ◽  
Rostam Abdollahi-Arpanahi

AbstractFemale fertility is an important trait that contributes to cow’s profitability and it can be improved by genomic information. The objective of this study was to detect genomic regions and variants affecting fertility traits in Iranian Holstein cattle. A data set comprised of female fertility records and 3,452,730 pedigree information from Iranian Holstein cattle were used to predict the breeding values, which were then employed to estimate the de-regressed proofs (DRP) of genotyped animals. A total of 878 animals with DRP records and 54k SNP markers were utilized in the genome-wide association study (GWAS). The GWAS was performed using a linear regression model with SNP genotype as a linear covariate. The results showed that an SNP on BTA19, ARS-BFGL-NGS-33473, was the most significant SNP associated with days from calving to first service. In total, [69] significant SNPs were located within 27 candidate genes. Novel potential candidate genes include OSTN, DPP6, EphA5, CADPS2, Rfc1, ADGRB3, Myo3a, C10H14orf93, KIAA1217, RBPJL, SLC18A2, GARNL3, NCALD, ASPH, ASIC2, OR3A1, CHRNB4, CACNA2D2, DLGAP1, GRIN2A and ME3. These genes are involved in different pathways relevant to female fertility and other characteristics in mammals. Gene set enrichment analysis showed that thirteen GO terms had significant overrepresentation of genes statistically associated with female fertility traits. The results of network analysis identified CCNB1 gene as a hub gene in the progesterone-mediated oocyte maturation pathway, significantly associated with age at first calving. The candidate genes identified in this study can be utilized in genomic tests to improve reproductive performance in Holstein cattle.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2020
Author(s):  
Mudasir Nazar ◽  
Xubin Lu ◽  
Ismail Mohamed Abdalla ◽  
Numan Ullah ◽  
Yongliang Fan ◽  
...  

In the dairy industry, mammary system traits are economically important for dairy animals, and it is important to explain their fundamental genetic architecture in Holstein cattle. Good and stable mammary system-related teat traits are essential for producer profitability in animal fitness and in the safety of dairy production. In this study, we conducted a genome-wide association study on three traits—anterior teat position (ATP), posterior teat position (PTP), and front teat length (FTL)—in which the FarmCPU method was used for association analyses. Phenotypic data were collected from 1000 Chinese Holstein cattle, and the GeneSeek Genomic Profiler Bovine 100K single-nucleotide polymorphisms (SNP) chip was used for cattle genotyping data. After the quality control process, 984 individual cattle and 84,406 SNPs remained for GWAS work analysis. Nine SNPs were detected significantly associated with mammary-system-related teat traits after a Bonferroni correction (p < 5.92 × 10−7), and genes within a region of 200 kb upstream or downstream of these SNPs were performed bioinformatics analysis. A total of 36 gene ontology (GO) terms and 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched (p < 0.05), and these terms and pathways are mainly related to metabolic processes, immune response, and cellular and amino acid catabolic processes. Eleven genes including MMS22L, E2F8, CSRP3, CDH11, PEX26, HAL, TAMM41, HIVEP3, SBF2, MYO16 and STXBP6 were selected as candidate genes that might play roles in the teat traits of cows. These results identify SNPs and candidate genes that give helpful biological information for the genetic architecture of these teat traits, thus contributing to the dairy production, health, and genetic selection of Chinese Holstein cattle.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 318
Author(s):  
Tae-Ho Ham ◽  
Yebin Kwon ◽  
Yoonjung Lee ◽  
Jisu Choi ◽  
Joohyun Lee

We conducted a genome-wide association study (GWAS) of cold tolerance in a collection of 127 rice accessions, including 57 Korean landraces at the seedling stage. Cold tolerance of rice seedlings was evaluated in a growth chamber under controlled conditions and scored on a 0–9 scale, based on their low-temperature response and subsequent recovery. GWAS, together with principal component analysis (PCA) and kinship matrix analysis, revealed four quantitative trait loci (QTLs) on chromosomes 1, 4, and 5 that explained 16.5% to 18.5% of the variance in cold tolerance. The genomic region underlying the QTL on chromosome four overlapped with a previously reported QTL associated with cold tolerance in rice seedlings. Similarly, one of the QTLs identified on chromosome five overlapped with a previously reported QTL associated with seedling vigor. Subsequent bioinformatic and haplotype analyses revealed three candidate genes affecting cold tolerance within the linkage disequilibrium (LD) block of these QTLs: Os01g0357800, encoding a pentatricopeptide repeat (PPR) domain-containing protein; Os05g0171300, encoding a plastidial ADP-glucose transporter; and Os05g0400200, encoding a retrotransposon protein, Ty1-copia subclass. The detected QTLs and further evaluation of these candidate genes in the future will provide strategies for developing cold-tolerant rice in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document