scholarly journals Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1164
Author(s):  
Mylene Vaillancourt ◽  
Sam P. Limsuwannarot ◽  
Catherine Bresee ◽  
Rahgavi Poopalarajah ◽  
Peter Jorth

Antibiotic-resistant Pseudomonas aeruginosa infections are the primary cause of mortality in people with cystic fibrosis (CF). Yet, it has only recently become appreciated that resistance mutations can also increase P. aeruginosa virulence, even in the absence of antibiotics. Moreover, the mechanisms by which resistance mutations increase virulence are poorly understood. In this study we tested the hypothesis that mutations affecting efflux pumps can directly increase P. aeruginosa virulence. Using genetics, physiological assays, and model infections, we show that efflux pump mutations can increase virulence. Mutations of the mexEF efflux pump system increased swarming, rhamnolipid production, and lethality in a mouse infection model, while mutations in mexR that increased expression of the mexAB-oprM efflux system increased virulence during an acute murine lung infection without affecting swarming or rhamnolipid gene expression. Finally, we show that an efflux pump inhibitor, which represents a proposed novel treatment approach for P. aeruginosa, increased rhamnolipid gene expression in a dose-dependent manner. This finding is important because rhamnolipids are key virulence factors involved in dissemination through epithelial barriers and cause neutrophil necrosis. Together, these data show how current and proposed future anti-Pseudomonal treatments may unintentionally make infections worse by increasing virulence. Therefore, treatments that target efflux should be pursued with caution.

Author(s):  
Mylene Vaillancourt ◽  
Sam P. Limsuwannarot ◽  
Catherine Bresee ◽  
Rahgavi Poopalarajah ◽  
Peter Jorth

Antibiotic resistant Pseudomonas aeruginosa infections are the primary cause of mortality in people with cystic fibrosis (CF). Yet it has only recently become appreciated that resistance mutations can also increase P. aeruginosa virulence, even in the absence of antibiotics. Moreover, the mechanisms by which resistance mutations increase virulence are poorly understood. In this study we tested the hypothesis that mutations affecting efflux pumps can directly increase P. aeruginosa virulence. Using genetics, physiological assays, and model infections, we show that efflux pump mutations can increase virulence. Mutations of the mexEF efflux pump system increased swarming, rhamnolipid production, and lethality in a mouse infection model, while mutations in mexR that increased expression of the mexAB-oprM efflux system increased virulence during an acute murine lung infection without affecting swarming or rhamnolipid gene expression. Finally, we show that an efflux pump inhibitor, which represents a proposed novel treatment approach for P. aeruginosa, increased rhamnolipid gene expression in a dose-dependent manner. This finding is important because rhamnolipids are key virulence factors involved in dissemination through epithelial barriers and cause neutrophil necrosis. Together, these data show how current and proposed future anti-Pseudomonal treatments may unintentionally make infections worse by increasing virulence. Therefore, treatments that target efflux should be pursued with caution.


2019 ◽  
Vol 220 (4) ◽  
pp. 666-676 ◽  
Author(s):  
Krisztina M Papp-Wallace ◽  
Elise T Zeiser ◽  
Scott A Becka ◽  
Steven Park ◽  
Brigid M Wilson ◽  
...  

Abstract Previously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated. Checkerboard susceptibility analysis revealed synergy between ceftazidime-avibactam and fosfomycin. Accordingly, the resistance elements present and expressed in P. aeruginosa were analyzed using whole-genome sequencing and transcriptome profiling. Mutations in genes that are known to contribute to β-lactam resistance were identified. Moreover, expression of blaPDC, the mexAB-oprM efflux pump, and murA were upregulated. When fosfomycin was administered alone, the frequency of mutations conferring resistance was high; however, coadministration of fosfomycin with ceftazidime-avibactam yielded a lower frequency of resistance mutations. In a murine infection model using a high bacterial burden, ceftazidime-avibactam-fosfomycin significantly reduced the P. aeruginosa colony-forming units (CFUs), by approximately 2 and 5 logs, compared with stasis and in the vehicle-treated control, respectively. Administration of ceftazidime-avibactam and fosfomycin separately significantly increased CFUs, by approximately 3 logs and 1 log, respectively, compared with the number at stasis, and only reduced CFUs by approximately 1 log and 2 logs, respectively, compared with the number in the vehicle-treated control. Thus, the combination of ceftazidime-avibactam-fosfomycin was superior to either drug alone. By employing a "mechanism-based approach" to combination chemotherapy, we show that ceftazidime-avibactam-fosfomycin has the potential to offer infected patients with high bacterial burdens a therapeutic hope against infection with MDR P. aeruginosa that lack metallo-β-lactamases.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Peter Jorth ◽  
Kathryn McLean ◽  
Anina Ratjen ◽  
Patrick R. Secor ◽  
Gilbert E. Bautista ◽  
...  

ABSTRACT While much attention has been focused on acquired antibiotic resistance genes, chromosomal mutations may be most important in chronic infections where isolated, persistently infecting lineages experience repeated antibiotic exposure. Here, we used experimental evolution and whole-genome sequencing to investigate chromosomally encoded mutations causing aztreonam resistance in Pseudomonas aeruginosa and characterized the secondary consequences of resistance development. We identified 19 recurrently mutated genes associated with aztreonam resistance. The most frequently observed mutations affected negative transcriptional regulators of the mexAB-oprM efflux system and the target of aztreonam, ftsI. While individual mutations conferred modest resistance gains, high-level resistance (1,024 µg/ml) was achieved through the accumulation of multiple variants. Despite being largely stable when strains were passaged in the absence of antibiotics, aztreonam resistance was associated with decreased in vitro growth rates, indicating an associated fitness cost. In some instances, evolved aztreonam-resistant strains exhibited increased resistance to structurally unrelated antipseudomonal antibiotics. Surprisingly, strains carrying evolved mutations which affected negative regulators of mexAB-oprM (mexR and nalD) demonstrated enhanced virulence in a murine pneumonia infection model. Mutations in these genes, and other genes that we associated with aztreonam resistance, were common in P. aeruginosa isolates from chronically infected patients with cystic fibrosis. These findings illuminate mechanisms of P. aeruginosa aztreonam resistance and raise the possibility that antibiotic treatment could inadvertently select for hypervirulence phenotypes. IMPORTANCE Inhaled aztreonam is a relatively new antibiotic which is being increasingly used to treat cystic fibrosis patients with Pseudomonas aeruginosa airway infections. As for all antimicrobial agents, bacteria can evolve resistance that decreases the effectiveness of the drug; however, the mechanisms and consequences of aztreonam resistance are incompletely understood. Here, using experimental evolution, we have cataloged spontaneous mutations conferring aztreonam resistance and have explored their effects. We found that a diverse collection of genes contributes to aztreonam resistance, each with a small but cumulative effect. Surprisingly, we found that selection for aztreonam resistance mutations could confer increased resistance to other antibiotics and promote hypervirulence in a mouse infection model. Our study reveals inherent mechanisms of aztreonam resistance and indicates that aztreonam exposure can have unintended secondary effects. IMPORTANCE Inhaled aztreonam is a relatively new antibiotic which is being increasingly used to treat cystic fibrosis patients with Pseudomonas aeruginosa airway infections. As for all antimicrobial agents, bacteria can evolve resistance that decreases the effectiveness of the drug; however, the mechanisms and consequences of aztreonam resistance are incompletely understood. Here, using experimental evolution, we have cataloged spontaneous mutations conferring aztreonam resistance and have explored their effects. We found that a diverse collection of genes contributes to aztreonam resistance, each with a small but cumulative effect. Surprisingly, we found that selection for aztreonam resistance mutations could confer increased resistance to other antibiotics and promote hypervirulence in a mouse infection model. Our study reveals inherent mechanisms of aztreonam resistance and indicates that aztreonam exposure can have unintended secondary effects.


2019 ◽  
Vol 17 (1) ◽  
pp. 110-120
Author(s):  
G. C. AGU ◽  
B. T. THOMAS ◽  
O. O. SALAMI ◽  
O. D. POPOOLA

Pseudomonas aeruginosa is an important opportunistic pathogen and one of the leading causes of multi-drug resistant nosocomial infections. This study was therefore carried out to determine the resistance nature, and the role of efflux pump in multidrug resistance of Pseudomonas aeruginosa isolated from different environmental sources using the efflux pump inhibitor, Carbonyl Cyanide 3-Chlorophenylhydrazone (CCCP). A total of 220 environmental samples were collected and processed following standard techniques. Susceptibility to antibiotics was performed using disc diffusion methods as described by the Clinical and Laboratory Standards Institute. Activity of the efflux pump system was carried out using the efflux pump inhibitor, CCCP. Results obtained identified 100 (45.5%) Pseudomonas aeruginosa and 72 (32.7%) other strains of Pseudomonas spp. The susceptibility testing revealed that all the identified strains of Pseudomonas aeruginosa that were subjected to susceptibility test were significantly resistant to ampicillin and cefotaxime, But the  resistance profile of isolates to tetracycline, chloramphenicol, ceftriaxone, cefuroxime and perfloxacin were 93%, 72.1%, 79.1%, 58.1% and 51.2% respectively. However, imipenem was the most sensitive (100%), followed by cefepime (65%) and gentamicin (44%). Carbonyl Cyanide 3-Chlorophenylhydrazone decreased the minimum inhibitory concentration (MIC) of the isolates by 2 folds. Results obtained have shown the ubiquitous presence of multi-drug resistant P. aeruginosa from the environmental samples examined. Furthermore, it indicated the role of efflux pump in antibiotics resistance in P. aeruginosa isolates which indicate that P. aeruginosa strains from environmental sources could resist antibiotics by the efflux mechanism.      


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 577
Author(s):  
Douweh Leyla Gbian ◽  
Abdelwahab Omri

The eradication of Pseudomonas aeruginosa in cystic fibrosis patients has become continuously difficult due to its increased resistance to treatments. This study assessed the efficacy of free and liposomal gentamicin and erythromycin, combined with Phenylalanine arginine beta-naphthylamide (PABN), a broad-spectrum efflux pump inhibitor, against P. aeruginosa isolates. Liposomes were prepared and characterized for their sizes and encapsulation efficiencies. The antimicrobial activities of formulations were determined by the microbroth dilution method. Their activity on P. aeruginosa biofilms was assessed, and the effect of sub-inhibitory concentrations on bacterial virulence factors, quorum sensing (QS) signals and bacterial motility was also evaluated. The average diameters of liposomes were 562.67 ± 33.74 nm for gentamicin and 3086.35 ± 553.95 nm for erythromycin, with encapsulation efficiencies of 13.89 ± 1.54% and 51.58 ± 2.84%, respectively. Liposomes and PABN combinations potentiated antibiotics by reducing minimum inhibitory and bactericidal concentrations by 4–32 fold overall. The formulations significantly inhibited biofilm formation and differentially attenuated virulence factor production as well as motility. Unexpectedly, QS signal production was not affected by treatments. Taken together, the results indicate that PABN shows potential as an adjuvant of liposomal macrolides and aminoglycosides in the management of lung infections in cystic fibrosis patients.


2018 ◽  
Vol 63 (2) ◽  
pp. e01718-18 ◽  
Author(s):  
Srijan Ranjitkar ◽  
Adriana K. Jones ◽  
Mina Mostafavi ◽  
Zachary Zwirko ◽  
Oleg Iartchouk ◽  
...  

ABSTRACT Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa. Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.


2020 ◽  
pp. 59-67
Author(s):  
Sulaiman D. Sulaiman ◽  
Ghusoon A. Abdulhasan

  Pseudomonas aeruginosa is considered as a developing opportunistic nosocomial pathogen and is well-known for its multidrug resistance that can be efficiently treated by a combination of antibiotics andefflux pump inhibitors (EPI). Therefore, the purpose of this study was to investigate the effect of curcumin as an EPI for the enhancement of the effectiveness of antibiotics against multidrug resistant (MDR) isolates ofP. aeruginosa. Susceptibility patterns of suspected bacteria was determined using the disc diffusion method andresistant bacteria were identified using chromogenic agar and 16S rDNA. The effectsof curcuminon the enhancement of antibiotics’s activity was evaluated usingthe broth microdilution method.The susceptibility patterns for 50 (67.6%) suspectedP. aeruginosaisolates showed that 36 (72%) of these isolateswere resistant to one of the used antibiotics,whereasonly 21 (42%) were MDR. The highest percentage of resistance was observedtoceftazidime (66%) followed by ciprofloxacin and levofloxacin (40%). Only 35 isolates were specified by chromogenic agar and 16S rDNAas P. aeruginosa.The minimal inhibitory concentration (MIC) of 35 isolates for ciprofloxacin resistant was between 4 and128 µg/ml while for ceftazidime was between 64and 512 µg/ml. After the addition of 50 μg/ml curcumin with ciprofloxacin, there wasa significant increase in the sensitivity (p≤ 0.01) of 13 MDR P.aeroginosa isolates whereas no differences in the sensitivity to ceftazidime were recorded before and after addition ofcurcumin. In conclusion, the results of this study show that curcumin can decrease the MIC value of ciprofloxacin in MDR isolates of P. aeruginosaand can be used as a native compound to enhance the treatment of resistant isolates with ciprofloxacin.


2021 ◽  
Author(s):  
Golnaz Mobasseri ◽  
Thong Kwai Lin ◽  
Cindy Shuan Ju Teh

Abstract Multidrug-resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) poses a serious public health threat. K. pneumoniae strains that produce extended-spectrum beta-lactamases (ESBL) are becoming increasingly reported in nosocomial and community-acquired infections. Besides resistance genes, integrons, and plasmids, altered membrane permeability caused by porin loss and energy-dependent efflux have also contributed to antibiotic resistance in K. pneumoniae. The objective of this study was to determine the correlation between the reduction of antibiotic susceptibility and overexpression of efflux pump as well as the lack of outer membrane proteins (OMPs) among clinical ESBLs resistant K. pneumoniae. The expression levels of ramA, acrA, ompK35 and ompK36 in 12 MDR K. pneumoniae strains with varying MICs levels were analyzed using quantitative real time-Polymerase Chain Reaction (qRT-PCR). The role of efflux pump on antibiotic resistance was also studied by using minimum inhibitory concentration (MICs) method with//without efflux pump inhibitor. The result indicated that the strains with highest resistance to cefotaxime showed the lowest level of ompK35 and ompK36 genes expression while the strains with lowest MIC level of resistance to cefotaxime showed the highest level of expression of acrA and ramA. Our finding also revealed the effect of efflux pump inhibitor phenyl-arginine-b-naphthylamide (PAβN) on the MIC levels of ceftazidime, amoxicillin-clavulanate and cefotaxime which were significantly reduced around 1–7 folds MIC levels. These results suggest that Efflux pump system and deficiently of OMPs contributing role in antibiotic susceptibility which should be taken seriously to prevent the treatment failure due to antimicrobial resistance.


2007 ◽  
Vol 51 (9) ◽  
pp. 3235-3239 ◽  
Author(s):  
Carmen E. DeMarco ◽  
Laurel A. Cushing ◽  
Emmanuel Frempong-Manso ◽  
Susan M. Seo ◽  
Tinevimbo A. A. Jaravaza ◽  
...  

ABSTRACT Efflux is an important resistance mechanism in Staphylococcus aureus, but its frequency in patients with bacteremia is unknown. Nonreplicate bloodstream isolates were collected over an 8-month period, and MICs of four common efflux pump substrates, with and without the broad-spectrum efflux pump inhibitor reserpine, were determined (n = 232). A reserpine-associated fourfold decrease in MIC was considered indicative of efflux. Strains exhibiting efflux of at least two of the four substrates were identified (“effluxing strains” [n = 114]). For these strains, MICs with or without reserpine for an array of typical substrates and the expression of mepA, mdeA, norA, norB, norC, and qacA/B were determined using quantitative real-time reverse transcription-PCR (qRT-PCR). A fourfold or greater increase in gene expression was considered significant. The most commonly effluxed substrates were ethidium bromide and chlorhexidine (100 and 96% of effluxing strains, respectively). qRT-PCR identified strains overexpressing mepA (5 [4.4%]), mdeA (13 [11.4%]), norA (26 [22.8%]), norB (29 [25.4%]), and norC (19 [16.7%]); 23 strains overexpressed two or more genes. Mutations probably associated with increased gene expression included a MepR-inactivating substitution and norA promoter region insertions or deletions. Mutations possibly associated with increased expression of the other analyzed genes were also observed. Effluxing strains comprised 49% of all strains studied (114/232 strains), with nearly half of these overexpressing genes encoding MepA, MdeA, and/or NorABC (54/114 strains). Reduced susceptibility to biocides may contribute to persistence on environmental surfaces, and efflux of drugs such as fluoroquinolones may predispose strains to high-level target-based resistance.


Sign in / Sign up

Export Citation Format

Share Document