scholarly journals Necrotizing Gingivitis: Microbial Diversity and Quantification of Protein Secretion in Necrotizing Gingivitis

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1197
Author(s):  
Nicolas Gerhard ◽  
Thomas Thurnheer ◽  
Susanne Kreutzer ◽  
Rudolf Dominik Gmür ◽  
Thomas Attin ◽  
...  

Necrotizing gingivitis (NG) is a necrotizing periodontal disease that differs from chronic gingivitis (CG). To date, both the microbiological causes and the involved host cytokine response of NG still remain unclear. Here, we investigated corresponding interdental plaque and serum samples from two groups of Chinese patients with CG (n = 21) or NG (n = 21). The microbiota were studied by 16S rRNA Illumina MiSeq sequencing of the microbial metagenome and by assessing quantitatively the abundance of the phylum Bacteroidetes, the genus Prevotella and the species T. forsythia, P. endodontalis, and P. gingivalis using fluorescence in situ hybridization (FISH). With respect to the associated host response, the levels of 30 inflammatory mediators were quantified by multiplex immunoassay analysis. Differential microbial abundance analysis of the two disease groups revealed at the phylum level that Proteobacteria accounted for 67% of the differentially abundant organisms, followed by organisms of Firmicutes (21%) and Actinobacteria (9%). At the species level, significant differences in abundance were seen for 75 species of which 58 species were significantly more abundant in CG patients. Notably, the FISH analysis revealed that Bacteroidetes was the most prevalent phylum in NG. The multiplex cytokine assay showed significant quantitative differences between the disease groups for eight analytes (GM–CSF, G–CSF, IFN–α, IL–4, IL–13, TNF–α, MIG, and HGF). The G–CSF was found to be the most significantly increased inflammatory protein marker in NG. The next-generation sequencing (NGS) data supported the understanding of NG as a multi-microbial infection with distinct differences to CG in regard to the microbial composition.

1999 ◽  
Vol 189 (12) ◽  
pp. 1987-1992 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Scott Cooper ◽  
Giao Hangoc ◽  
Ji-Liang Gao ◽  
Philip M. Murphy

Macrophage inflammatory protein (MIP)-1α, a CC chemokine, enhances proliferation of mature subsets of myeloid progenitor cells (MPCs), suppresses proliferation of immature MPCs, and mobilizes mature and immature MPCs to the blood. MIP-1α binds at least three chemokine receptors. To determine if CCR1 was dominantly mediating the above activities of MIP-1α, CCR1-deficient (−/−) mice, produced by targeted gene disruption, were used. MIP-1α enhanced colony formation of marrow granulocyte/macrophage colony-forming units (CFU-GM), responsive to stimulation by granulocyte/macrophage colony-stimulating factor (GM-CSF), and CFU-M, responsive to stimulation by M-CSF, from littermate control CCR1+/+ but not CCR1−/− mice. Moreover, MIP-1α did not mobilize MPCs to the blood or synergize with G-CSF in this effect in CCR1−/− mice. However, CCR1−/− mice were increased in sensitivity to MPC mobilizing effects of G-CSF. Multi-growth factor–stimulated MPCs in CCR1−/− and CCR1+/+ marrow were equally sensitive to inhibition by MIP-1α. These results implicate CCR1 as a dominant receptor for MIP-1α enhancement of proliferation of lineage-committed MPCs and for mobilization of MPCs to the blood. CCR1 is not a dominant receptor for MIP-1α suppression of MPC proliferation, but it does negatively impact G-CSF–induced MPC mobilization.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 180
Author(s):  
Negash Kabtimer Bereded ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
Manuel Curto ◽  
Herwig Waidbacher ◽  
...  

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.


2003 ◽  
Vol 71 (1) ◽  
pp. 365-373 ◽  
Author(s):  
Tong-Jun Lin ◽  
Lauren H. Maher ◽  
Kaede Gomi ◽  
Jeffrey D. McCurdy ◽  
Rafael Garduno ◽  
...  

ABSTRACT Mast cells are important as sentinel cells in host defense against bacterial infection. Much of their effectiveness depends upon recruiting other immune cells; however, little is known about the mechanisms of this response. CCL20, also known as macrophage inflammatory protein-3α (MIP-3α), Exodus, and LARC, is a chemokine known to be a potent chemoattractant for immature dendritic cells and T cells. In this study, we examined the human mast cell production of both CCL20 and granulocyte-macrophage colony-stimulating factor (GM-CSF), a critical cytokine for innate immune responses in the lung, in response to Pseudomonas aeruginosa. Reverse transcription-PCR and Western blot analysis demonstrated that the human mast cells (HMC-1) express CCL20 mRNA and are able to produce a significant amount (32.4 ng/ml) of CCL20 protein following stimulation by calcium ionophore and phorbol myristate acetate. Importantly, P. aeruginosa potently stimulated CCL20 production in human cord blood-derived mast cells (CBMC), with production peaking at 6 h after stimulation. This time course of expression was distinct from that of GM-CSF, which peaked after 24 to 48 h. Significant CCL20 production did not occur following immunoglobulin E-mediated activation of CBMC under conditions which induced a substantial GM-CSF response. Interestingly, the CCL20 response of mast cells to P. aeruginosa was relatively resistant to inhibition by the corticosteroid dexamethasone, interleukin-10, or cyclosporine, while GM-CSF production was potently inhibited. However, P. aeruginosa-induced CCL20 production was blocked by the protein kinase C (PKC) inhibitor Ro 31-8220 and a PKC pseudosubstrate. These results support a role for human mast cells in the initiation of immune responses to P. aeruginosa infection.


2021 ◽  
Author(s):  
Maria Luisa Tello ◽  
Rebeca Lavega ◽  
Margarita Pérez ◽  
Antonio J. Pérez ◽  
Michael Thon ◽  
...  

Abstract The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. Mushrooms are a source of resources still to be revealed, which have applications not only in food, but in many other sectors such as health, industry and biotechnology. Mushroom cultivation consists of the development of selective substrates through composting where the mushroom grows via solid fermentation process. In case of Agaricus bisporus, the compost fully colonized by mycelium hardly produces mushrooms and it is necessary to apply a casing layer with certain physical, chemical and biological characteristics to shift from the vegetative mycelium to the reproductive one, where the native microbiota plays crucial roles. Currently, the industry faces a challenge to substitute the actual peat based casing materials due to the limited natural resources and the impact on the peatlands where peat is extracted.In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for fungi in an Illumina MiSeq. In addition, the microbiome dynamics and evolution (bacterial and fungal communities) in peat based casing along the process of incubation of Agaricus bisporus have been studied, while comparing the effect of fungicidal treatment (Chlorothalonil and Metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities to a specific microbial composition adapted to enhance the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus. Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency during production as well as possibly help us to have a clearer view of the microbial community-pathogen relationships as they are directly related to disease development.


2007 ◽  
Vol 15 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Gary Toedter ◽  
Karen Hayden ◽  
Carrie Wagner ◽  
Carrie Brodmerkel

ABSTRACT The accurate detection and quantitation of cytokines in serum are important in the study of disease mechanisms, pathogenesis, and treatment. Serum cytokines can reflect processes that are occurring at the cellular or tissue level and thus provide a means of indirectly monitoring these processes. Multiplex detection of cytokines allows the simultaneous measurement of multiple cytokines in a sample, increasing the efficiency of measuring the cytokines while reducing the serum sample volumes required for the testing. Two commercially available multiplex platforms were evaluated (Pierce SearchLight and Meso Scale Discovery), using multiplexes capable of simultaneously detecting eight cytokines. The cytokines analyzed in this study were gamma interferon, vascular endothelial growth factor, tumor necrosis factor alpha, interleukin-6 (IL-6), macrophage inflammatory protein 1β, monocyte chemoattractant protein 1, IL-12p40, and IL-4. The range of quantitation of the platforms, the recovery of spiked cytokines, and the detection of the cytokines in serum samples from subjects with ulcerative colitis, Crohn's disease, rheumatoid arthritis, and psoriasis were examined. The findings showed that the detection of the cytokines was highly dependent upon the platform, with the consistency of the detection of cytokines across platforms being dependent upon the cytokine being analyzed. A careful examination of platform assay performance must be made prior to utilizing multiplex platforms in a study. While some cytokines will give similar patterns of results across platforms, others will be highly variable. The use of the same platform within a study or across studies where data will be compared is advised.


2020 ◽  
Vol 35 (3) ◽  
pp. 446-455
Author(s):  
Karina Melkonyan ◽  
Ramazan Nakokhov ◽  
Tatyana Rusinova ◽  
Yana Yutskevich ◽  
Ilya Bykov ◽  
...  

Aim to study non-specific immune response characteristics (serum cytokine profile) in rats after subcutaneous implantation of the decellularized esophagus matrix. Methods Data were obtained in Wistar rats. The rats underwent subcutaneous implantation of decellularized esophagus (DE) and native allogeneic esophagus (NE). Explantation of sampling were carried out on the 7th, 14th and 21st day of the experiment. Explanted NEs and DEs were processed for histologic examination. The content of IL1α, IL2, IL4, IL17А, TNFα, IFNγ and GM-CSF in serum samples were tested by ELISA. Results In rat serum with DEs on the 7th day of the experiment it was significant increase in IL1α level in comparison with control group, IL2, TNFα, IL4 levels did not differ from the control group levels that indicates the stabilization of inflammation. The content of IL17A, IFNγ and GM-CSF significantly decreased compared to control. On the 14th day, IL17A concentration analysis showed a sharp decrease in comparison with the the 7th experimental day. We found decrease in IL1α level vs control group and decrease in IFNγ level vs 7th day. On the 21st experimental day was shown a significant decrease in the IL17A, IFNγ and IL1α content in DE rats. Conclusions It was found dynamic change in studied rat cytokine concentrations that correspond to favourable clinical picture in DE group in comparison with an active inflammatory reaction in NE group. IL1α, IL4, IL17A and IFNγ concentrations reflect positive dynamics of the wound healing process and the absence of local inflammation and rejection of decellularized matrices.


2017 ◽  
Vol 4 (4) ◽  
pp. 160829 ◽  
Author(s):  
Anni Djurhuus ◽  
Svein-Ole Mikalsen ◽  
Helge-Ansgar Giebel ◽  
Alex D. Rogers

There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter , Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance–decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.


2020 ◽  
Vol 57 (4) ◽  
pp. 1049-1056 ◽  
Author(s):  
Yijie Guo ◽  
Ruiling Wang ◽  
Yae Zhao ◽  
Dongling Niu ◽  
Xiaojuan Gong ◽  
...  

Abstract The microbiota of mites is closely related to their growth, development, and pathogenicity. Therefore, it is necessary to study the bacteria in mites. Here, for the first time, based on 16s rRNA V3-V4 region, the microbiota of 45 samples of nine species in six families of medically important mites were analyzed using Illumina MiSeq sequencing technique. The results showed that, at the phylum level, Proteobacteria (56.20–86.40%) were the dominant, followed by Firmicutes (6.41–19.43%), Bacteroidetes (5.56–13.38%) and Actinobacteria (1.93–28.07%). But at the genera the microbiota of mites are different, showing four characteristics: 1) The microbiota is related to the parasitic host. Demodex folliculorum (Acariforms: Demodicidae) and D. brevis (Acariforms: Demodicidae), both parasitizing humans, showed similar microbial composition, as did D. canis (Acariforms: Demodicidae) and Sarcoptes scabiei canis (Acariforms: Sarcoptidae) parasitizing dogs, but D. caprae (Acariforms: Demodicidae) parasitizing sheep showed unique microbial community; 2) The microbiota is related to mite’s species. Dermatophagoides farinae and Cheyletus malaccensis (Acariforms: Cheyletidae), both collecting from flour, show respective microbial composition; 3) The microbiota is related to the life stage. There were differences in microbiota between adults and larvae of D. farinae, but no differences observed in Psoroptes cuniculi (Acariforms: Psoroptidae); and 4) The microbiota is related to the blood-feeding state. The microbiota of blood-fed Ornithonyssus bacoti (Parasitiformes: Macronyssidae) adults was significantly higher than that of unfed adults. This indicates that the microbiota of mites is affected by mite species, parasitic host, growth stage and habitat. Therefore, understanding these influencing factors will have a very important guiding significance for the prevention and control of mite-borne diseases.


2020 ◽  
Vol 8 (9) ◽  
pp. 1379 ◽  
Author(s):  
Marc-Kevin Zinn ◽  
Laura Schages ◽  
Dirk Bockmühl

Toothbrushes play a central role in oral hygiene and must be considered one of the most common articles of daily use. We analysed the bacterial colonization of used toothbrushes by next generation sequencing (NGS) and by cultivation on different media. Furthermore, we determined the occurrence of antibiotic resistance genes (ARGs) and the impact of different bristle materials on microbial growth and survival. NGS data revealed that Enterobacteriaceae, Micrococcaceae, Actinomycetaceae, and Streptococcaceae comprise major parts of the toothbrush microbiome. The composition of the microbiome differed depending on the period of use or user age. While higher fractions of Actinomycetales, Lactobacillales, and Enterobacterales were found after shorter periods, Micrococcales dominated on both toothbrushes used for more than four weeks and on toothbrushes of older users, while in-vitro tests revealed increasing counts of Micrococcus on all bristle materials as well. Compared to other environments, we found a rather low frequency of ARGs. We determined bacterial counts between 1.42 × 106 and 1.19 × 107 cfu/toothbrush on used toothbrushes and no significant effect of different bristles materials on bacterial survival or growth. Our study illustrates that toothbrushes harbor various microorganisms and that both period of use and user age might affect the microbial composition.


2020 ◽  
Vol 79 (5) ◽  
pp. 646-656 ◽  
Author(s):  
ZeYu Huang ◽  
Jing Chen ◽  
BoLei Li ◽  
Benhua Zeng ◽  
Ching-Heng Chou ◽  
...  

ObjectivesEmerging evidence suggests that the microbiome plays an important role in the pathogenesis of osteoarthritis (OA). We aimed to test the two-hit model of OA pathogenesis and potentiation in which one ‘hit’ is provided by an adverse gut microbiome that activates innate immunity; the other ‘hit’ is underlying joint damage.MethodsMedical history, faecal and blood samples were collected from human healthy controls (OA-METS-, n=4), knee OA without metabolic syndrome (OA+METS-, n=7) and knee OA with metabolic syndrome (OA+METS+, n=9). Each group of human faecal samples, whose microbial composition was identified by 16S rRNA sequencing, was pooled and transplanted into germ-free mice 2 weeks prior to meniscal/ligamentous injury (MLI) (n≥6 per group). Eight weeks after MLI, mice were evaluated for histological OA severity and synovitis, systemic inflammation and gut permeability.ResultsHistological OA severity following MLI was minimal in germ-free mice. Compared with the other groups, transplantation with the OA+METS+ microbiome was associated with higher mean systemic concentrations of inflammatory biomarkers (interleukin-1β, interleukin-6 and macrophage inflammatory protein-1α), higher gut permeability and worse OA severity. A greater abundance of Fusobacterium and Faecalibaterium and lesser abundance of Ruminococcaceae in transplanted mice were consistently correlated with OA severity and systemic biomarkers concentrations.ConclusionThe study clearly establishes a direct gut microbiome-OA connection that sets the stage for a new means of exploring OA pathogenesis and potentially new OA therapeutics. Alterations of Fusobacterium, Faecalibaterium and Ruminococcaceae suggest a role of these particular microbes in exacerbating OA.


Sign in / Sign up

Export Citation Format

Share Document