scholarly journals Molecular Characteristics and Antimicrobial Resistance of Salmonella enterica Serovar Schwarzengrund from Chicken Meat in Japan

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1336
Author(s):  
Kaoru Matsui ◽  
Chisato Nakazawa ◽  
Shwe Thiri Maung Maung Khin ◽  
Eriko Iwabuchi ◽  
Tetsuo Asai ◽  
...  

Our previous study revealed that Salmonella enterica serovar Schwarzengrund-contaminated areas of broiler chickens have expanded from West Japan to East Japan. The present study investigated the antimicrobial resistance and molecular characteristics of 124 S. Schwarzengrund isolates obtained from chicken meat produced in East and West Japan from 2008 to 2019. Comparing the isolates obtained in 2008 and 2015–2019, an increase in the proportion of those resistant to kanamycin [51.4–89.7% (p < 0.001)] was observed. In contrast, the proportion of isolates resistant to both streptomycin and tetracycline and those that harbored a 1.0-kb class 1 integron, aadA1, and tetA, significantly decreased from 100% in 2008 to 47.1% in 2015–2019 (p < 0.001). A 1.0-kb class 1 integron containing aadA1, harbored by 78 isolates, was different from that reported in globally distributed S. Schwarzengrund strains (1.9 kb, containing the dfrA12-aadA2 gene cassette). Twenty-five isolates from different product districts and years of isolation were typed as sequence type (ST) 241 with multilocus sequence typing. Our results suggest that S. Schwarzengrund, which contaminates chicken meat in Japan, shares a common ancestor regardless of the product district from 2008 to recent years. Moreover, S. Schwarzengrund ST241 may have spread from western to eastern Japan.

2006 ◽  
Vol 69 (1) ◽  
pp. 214-216 ◽  
Author(s):  
TETSUO ASAI ◽  
MICHIYO ITAGAKI ◽  
YUTAKA SHIROKI ◽  
MAKIKO YAMADA ◽  
MITSUO TOKORO ◽  
...  

Salmonella enterica subsp. enterica serotype Infantis isolates from retail raw chicken meat (n = 98) and broiler chickens on farms (n = 70) were examined for antimicrobial susceptibility and antimicrobial resistance genes. A total of 15 antimicrobial resistance types, 14 in meat and 10 in broiler isolates, were identified, and 9 of the 15 types were indistinguishable between meat and broiler isolates. Resistance to both oxytetracycline and dihydrostreptomycin accounted for 94.0% of the resistance types in meat and broiler isolates, and each type harbored aadA1 within 1.0 kb of class 1 integron and tetA. Of nalidixic acid resistance types, point mutations at 87Asp (GAC) to Tyr (TAC) in the quinolone resistance-determining region of gyrA was detected in 10 of 13 meat isolates and at 87Asp to Asn (AAC) in four of seven broiler isolates. These findings suggest that the antimicrobial resistance of Salmonella Infantis in retail chicken meat predominantly originates from broiler chickens.


2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 58-66
Author(s):  
Magdalina K. Zakharyan

A total of 182 non-typhoid Salmonella enterica (NTS) isolates recovered from patients between 1996 and 2014 were included in the current study focused on class 1 integron detection and its association with multidrug resistance (MDR) phenotype. A high prevalence of isolates displaying MDR and penta-resistance (resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline) phenotypes of clinical significance was revealed. Serotype-specific prevalence of antimicrobial resistance as well as class 1 integrons and inserted variable segments was detected in isolates. The results indicated the limitations of current antimicrobial therapy to control infections caused by MDR isolates of NTS, especially belonging to serotype Typhimurium.


Author(s):  
Jinru Chen ◽  
Joycelyn Quansah

Fresh produce-borne enteric bacterial pathogens with resistance to antibiotics have posed serious challenges to food safety and public health worldwide.  This study examined the antibiotic resistance profile of Salmonella enterica (n=33), previously isolated from exotic and indigenous leafy green vegetable samples (n=328) collected from 50 vegetable farms in 12 farming areas and 37 vegetable sellers in 4 market centers in Accra, Ghana during the period of March 2016 to March 2017, and determined the distribution of integrons among antibiotic-resistant isolates.  The susceptibility of the Salmonella isolates to 12 antibiotics was assayed using the standard disc diffusion assay.  The minimum inhibitory concentrations (MICs) of the five most resisted antibiotics were determined using the twofold macro dilution method.  PCR assay was used to detect the presence of integrons in Salmonella cells, and PCR product with amplified integron gene cassette was purified and sequenced using the Sanger sequencing technology.  The Salmonella isolates used in the study resisted at least one tested antibiotic, and multi-drug resistant (MDR) isolates were 30.3% (10/33).  Most isolates (81.8%) were resistant to sulfisoxazole.  The MICs of tetracycline, cefoxitin, streptomycin, ampicillin, and sulfisoxazole were 16, 32, 64, 64, and &gt; 1,024 µg/ml, respectively.  A total of five different patterns of MDR were observed among the Salmonella isolates, and the common MDR patterns were AAuFox (30.3%) and AAuFoxSSu (18.1%).  One out of the 33 (3.0%) Salmonella isolates tested positive for class 1 integron with a gene cassette of about 800 bp.  Nucleotide sequencing revealed the class 1 integron carried a single gene dfrA7 .  Future studies are needed to confirm whether the consumption of contaminated leafy green vegetables is a route of acquiring antibiotic-resistant Salmonella by consumers in Accra, Ghana.


2010 ◽  
Vol 76 (11) ◽  
pp. 3657-3667 ◽  
Author(s):  
Janine Beutlich ◽  
Irene Rodr�guez ◽  
Andreas Schroeter ◽  
Annemarie K�sbohrer ◽  
Reiner Helmuth ◽  
...  

ABSTRACT Recently, Salmonella enterica subsp. enterica serovar Saintpaul has increasingly been observed in several countries, including Germany. However, the pathogenic potential and epidemiology of this serovar are not very well known. This study describes biological attributes of S. Saintpaul isolates obtained from turkeys in Germany based on characterization of their pheno- and genotypic properties. Fifty-five S. Saintpaul isolates from German turkeys and turkey-derived food products isolated from 2000 to 2007 were analyzed by using antimicrobial agent, organic solvent, and disinfectant susceptibility tests, isoelectric focusing, detection of resistance determinants, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and hybridization experiments. These isolates were compared to an outgroup consisting of 24 S. Saintpaul isolates obtained from humans and chickens in Germany and from poultry and poultry products (including turkeys) in Netherlands. A common core resistance pattern was detected for 27 German turkey and turkey product isolates. This pattern included resistance (full or intermediate) to ampicillin, amoxicillin-clavulanic acid, gentamicin, kanamycin, nalidixic acid, streptomycin, spectinomycin, and sulfamethoxazole and intermediate resistance or decreased susceptibility to ciprofloxacin (MIC, 2 or 1 μg/ml, respectively) and several third-generation cephalosporins (including ceftiofur and cefoxitin [MIC, 4 to 2 and 16 to 2 μg/ml, respectively]). These isolates had the same core resistance genotype, with bla TEM-1, aadB, aadA2, sul1, a Ser83→Glu83 mutation in the gyrA gene, and a chromosomal class 1 integron carrying the aadB-aadA2 gene cassette. Their XbaI, BlnI, and combined XbaI-BlnI PFGE patterns revealed levels of genetic similarity of 93, 75, and 90%, respectively. This study revealed that a multiresistant S. Saintpaul clonal line is widespread in turkeys and turkey products in Germany and was also detected among German human fecal and Dutch poultry isolates.


2018 ◽  
Vol 24 (8) ◽  
pp. 1217-1225 ◽  
Author(s):  
Sabrina Hossain ◽  
Benthotage Chamara Jayasankha De Silva ◽  
Sudu Hakuruge Madusha Pramud Wimalasena ◽  
Hansani Nilupama Kumari Senarath Pathirana ◽  
Pasan Sepala Dahanayake ◽  
...  

2005 ◽  
Vol 49 (2) ◽  
pp. 503-511 ◽  
Author(s):  
Wondwossen A. Gebreyes ◽  
Siddhartha Thakur

ABSTRACT Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans and 28 from pigs) of clinically important Salmonella serovar Muenchen were characterized. Among the porcine isolates, 75% showed resistance to seven antimicrobials: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline, amoxicillin-clavulanic acid, and kanamycin (R type ACSSuTAxK). One isolate from humans showed resistance to 10 of the 12 antimicrobials: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline, amoxicillin-clavulanic acid, kanamycin, gentamicin, cephalothin, and ceftriaxone (R type ACSSuTAxKGCfCro). Pulsed-field gel electrophoresis revealed no clonality between the porcine and the human strains. The porcine and the human MDR strains carried class 1 integrons of 2.0 and 1.0 kb, respectively. Genes specific to the porcine strain included aadA2, aphA1-Iab, and tetA(B). DNA sequencing revealed that the porcine isolates carried bla OXA-30 on a class 1 integron. Genes specific to the human strain included bla TEM, strA, strB, cmlA, tetA(A), and aadA2. No bla CMY-2 gene was detected. Serovar Muenchen strains of porcine and human origin were able to transfer resistance genes to laboratory strain Escherichia coli MG1655 by conjugation. Plasmid restriction with four restriction enzymes, EcoRI, BamHI, HindIII, and PstI, showed that the conjugative plasmids from porcine Salmonella serovar Muenchen and Typhimurium R-type MDR strains isolated from the same farms at the same time were similar on the basis of the sizes and the numbers of bands and Southern hybridization. The plasmid profiles among the Salmonella serovar Muenchen isolates from the two host species were different. This is the first report to show a high frequency of MDR Salmonella serovar Muenchen strains from pigs and a human strain that is similar to the MDR isolates with the AmpC enzyme previously reported among Salmonella serovars Newport and Typhimurium strains. The MDR strains from the two host species independently represent public health concerns, as Salmonella serovar Muenchen is among the top 10 causes of salmonellosis in humans.


2009 ◽  
Vol 53 (6) ◽  
pp. 2640-2642 ◽  
Author(s):  
Nick J. Evershed ◽  
Renee S. Levings ◽  
Neil L. Wilson ◽  
Steven P. Djordjevic ◽  
Ruth M. Hall

ABSTRACT IncA/C plasmids carrying an unusual cassette configuration in a class 1 integron and five further shared resistance genes, aacC4, aphA1, hph, sul2, and tetA(D) were found in Salmonella enterica serovars Senftenberg and Ohio. A deletion formed using a short region of homology in the 5′ conserved segment and the orfF cassette created an array with only part of orfF followed by the aadA2 cassette. The IncA/C plasmids were not recoverable by conjugation, but additional conjugative resistance plasmids were present in some strains.


2005 ◽  
Vol 49 (3) ◽  
pp. 1238-1241 ◽  
Author(s):  
Renee S. Levings ◽  
Sally R. Partridge ◽  
Diane Lightfoot ◽  
Ruth M. Hall ◽  
Steven P. Djordjevic

ABSTRACT A fifth gene cassette containing an aacC gene, aacCA5, was found in an aacCA5-aadA7 cassette array in a class 1 integron isolated from a multiply drug resistant Salmonella enterica serovar Kentucky strain. The AacC-A5 or AAC(3)-Ie acetyltransferase encoded by aacCA5 is related to other AAC(3)-I enzymes and confers resistance to gentamicin.


2020 ◽  
Vol 14 (4) ◽  
pp. 2383-2397
Author(s):  
Nartlada Onvimol ◽  
Phanita Chankate ◽  
Yuvadee Mahakhunkijcharoen ◽  
Thareerat Kalambaheti

Salmonella infection is the second most common cause of diarrhea in Thailand; however, the data on antimicrobial resistance is limited. There were137 Salmonella strains, isolated from patients and 126 strains isolated from chicken meat, collected from Nonthaburi, Thailand during 2002. The top five serotypes of patients isolates were Enteritidis (22%), Typhimurium (11%), Weltevreden (8.8%), Rissen (8%), and Choleraesuis (6.6%) while the top five serotypes of chicken meat isolates were found as follows: Schwarzengrund (11.91%), Hadar (11.11%), Rissen (8.73%), Amsterdam (7.94%), and Anatum (7.94%). Salmonella strains were most resistance to the class of antibiotics that act as inhibitor to nucleic acid synthesis such as antifolates group (Trimethoprim;SXT) and fluoroquinolones (Nalidixic acid; NA, Ciprofloxacin; CIP),while the β lactam antibiotic was more effective, i.e. the 3rd gen cephalosporin (Ceftazidime; CAZ, Cefotaxime ; CTX), Monobactam (Aztreonam; ATM) and carbapenams group (Imipenem; IMP, Meropenem; MEM). The role of class I integron element in transmission of the resistance gene was revealed by detection the gene cassette associated with a class 1 integron in plasmid preparation among 80% of the isolated strains. The gene cassettes containing resistant genes of dhfrA12 (resistant to trimethoprim) and aadA2 (resistant to streptomycin and spectinomycin), were detected more frequently in the resistant strains. These gene cassettes were likely to be transmitted via plasmid, as it could not be detected in genomic DNA.


Sign in / Sign up

Export Citation Format

Share Document