scholarly journals Exploring the Potential of High-Voltage Electric Field Cold Plasma (HVCP) Using a Dielectric Barrier Discharge (DBD) as a Plasma Source on the Quality Parameters of Carrot Juice

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 235 ◽  
Author(s):  
Muhammad Umair ◽  
Saqib Jabbar ◽  
Mustapha Nasiru ◽  
Tayyaba Sultana ◽  
Ahmed Senan ◽  
...  

The main aim of the current investigation was to contemplate the impact of high-voltage electric field cold plasma (HVCP) on different quality characteristics (enzymes, microbial activities, coloring pigments, ascorbic acid, polyphenolic compounds, °Brix, acidity, and color index) of carrot juice in correlation with thermal processing. A carrot juice (250 mL) sample sealed in pre-sterilized food-grade bottles, which placed between two dielectric quartz plates for HVCP treatment. The gap between the plates was 30 mm, and a stable and uniform plasma dielectric barrier discharge (DBD) generated for 3 and 4 min at 60, 70, and 80 kV. Air was used as a working gas during the DBD-based plasma treatment. The observed rise in temperature was 2–5 °C during the HVCP treatment. A water bath was used to carry out thermal treatment (100 °C for 5 min). The maximum inactivation of enzymes and microorganisms was achieved with thermal treatment and then with HVCP treatment at 70 kV for 4 min. However, maximum retention of coloring compounds, ascorbic acid, total phenols, flavonoids, and tannins was found following HVCP (70 kV for 4 min) treatment compared to thermal treatment. The °Brix, pH, and acidity remained unchanged irrespective of treatments. These findings suggest that HVCP treatment at 70 kV for 4 min may be a good alternative to thermal treatment, and it may successfully be applied in carrot juice production, resulting in reduced enzymes, lower microbial activity, and improved bioactive compounds. The prospects of overcoming the existing conventional physical and chemical methods for sterilization make it a novel and more economical technique to maintain food’s natural nourishment, composition, appearance, structure, and freshness.

2019 ◽  
Vol 20 (4) ◽  
pp. 1-12 ◽  
Author(s):  
Roberto Carlos Martínez Montejano ◽  
Carlos Miguel Castillo Escandón ◽  
Víctor Esteban Espinoza López ◽  
Isaac Campos Cantón ◽  
María Guadalupe Neira Velázquez ◽  
...  

This paper presents the development of a high voltage and high-frequency power electronics source, for plasma generation, at atmospheric pressure and vacuum, using helium and air as working gases. The source design consists of an inductive (L) full bridge series resonant inverter at high frequency, where the control implemented allows varying duty cycle and frequency. Plasma generation is made by high voltage with the power signal applied on two electrodes, which provides a strong electric field that excites, and thus, ionize helium particles or air particles. The power electronic source operation was tested in different plasma reactor configurations (dielectric barrier discharge, double dielectric barrier discharge, and jet type discharge). The developed power electronics source shows a correct performance and generate a strong electric field to achieve the plasma discharges desired.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5181
Author(s):  
Jan Mucko ◽  
Robert Dobosz ◽  
Ryszard Strzelecki

The article presents applications of systems with power electronic converters, high voltage transformers, and discharge chambers used for nonthermal, dielectric barrier discharge plasma treatment of a plastic surface and decontamination of organic loose products. In these installations, the inductance of the high voltage transformers and the capacitances of the electrode sets form resonant circuits that are excited by inverters. The article presents characteristic features of the installations and basic mathematical relationships as well as the impact of individual parameters of system components. These converters with their output installations were designed, built, and tested by the authors. Some of the converters developed by the authors are manufactured and used in the industry.


2019 ◽  
Vol 47 (1) ◽  
pp. 410-418 ◽  
Author(s):  
Douglas Breden ◽  
Cherian A. Idicheria ◽  
SeungHwan Keum ◽  
Paul M. Najt ◽  
Laxminarayan L. Raja

Sign in / Sign up

Export Citation Format

Share Document