scholarly journals A 28 Day Clinical Assessment of a Lactic Acid-containing Antimicrobial Intimate Gel Wash Formulation on Skin Tolerance and Impact on the Vulvar Microbiome

Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 55 ◽  
Author(s):  
Elizabeth Bruning ◽  
Ying Chen ◽  
Karen A. McCue ◽  
Joseph R. Rubino ◽  
Jeremy E. Wilkinson ◽  
...  

While intimate feminine hygiene products are widely used as part of daily cleansing routines, little is known about how these products impact the vulvovaginal area and its microbiome stability. This 4 week clinical study assessed tolerance of a novel gel wash containing lactic acid (pH 4.2) for external daily use when used on the external genital area and its effects on skin moisturization, vulvar skin pH, and the vulvar microbiome. After a 7 day pre-study conditioning period, 36 healthy females in three balanced age groups (18–29, 30–44, and 45–55 years) used the gel wash to cleanse their external genital area (mons pubis and vulva) and entire body at least once per day for 28 days. Skin tolerance of the gel wash was assessed by the gynecologist. Effects of the gel wash on vulvar skin microbiota were studied by performing bacterial 16S rRNA and fungal internal transcribed spacer (ITS) microbial richness and diversity analysis. Based on gynecologic assessment after 28 days of use, the gel wash showed acceptable tolerance, with no signs of increased dryness, redness, edema, itching, stinging, or burning. Use of the gel wash was associated with a significant increase in both short-term (single application) and longer-term (daily use for 28 days) skin moisturization. There was no significant change in vulvar skin pH over time with daily product use, and the gel wash did not significantly affect the natural vulvar microbiome species richness or diversity for bacteria or fungi. Results showed that this gel wash is a mild, moisturizing cleanser that maintains the natural pH and microbial diversity of vulvar skin. To our knowledge, this was the first study to assess the effect of an antimicrobial feminine gel wash on the natural pH and vulvar microbiome habitat of the skin using bacterial 16S rRNA and fungal ITS genetic sequencing techniques.

1982 ◽  
Vol 62 (3) ◽  
pp. 751-757 ◽  
Author(s):  
J. A. BASARAB ◽  
R. T. BERG ◽  
J. R. THOMPSON

The in vitro glucose consumption and lactic acid production by erythrocytes from 20 cattle of a Beef Synthetic (SY) breed group and 25 cattle of a double-muscled (DM) breed group were determined. There were three age groups and two sexes within each breed group. Animals within the DM breed group were categorized as either phenotypically normal- to moderate-muscled (DM carriers) or extreme-muscled (extreme DM) based on the phenotypic expression of the double-muscling trait and on their breeding history. Both DM phenotypes had higher (P < 0.01) erythrocyte glucose consumption and lactic acid production than normal-muscled, noncarrier cattle of the SY breed group. Extreme DM cattle were not different (P > 0.05) in either their erythrocyte glucose consumption or lactic acid production compared with DM carriers. No difference (P > 0.05) due to breed or phenotype was observed in the molar ratio of lactic acid produced to glucose consumed by erythrocytes. These results suggest that carriers of the Double Muscled Syndrome, regardless of phenotypic expression of the double-muscling trait, have a higher rate of erythrocyte glycolysis than normal cattle. Key words: Cattle, double muscled, erythrocyte, glucose, lactic acid


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1370-1375 ◽  
Author(s):  
Isabel Snauwaert ◽  
Bart Hoste ◽  
Katrien De Bruyne ◽  
Karolien Peeters ◽  
Luc De Vuyst ◽  
...  

Two lactic acid-producing, Gram-stain-positive rods were isolated from a microbial mat actively growing in the littoral zone of an Antarctic lake (Forlidas Pond) in the Pensacola mountains and studied using a polyphasic taxonomic approach. The isolates were examined by phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of pheS, rpoA and atpA, and biochemical and genotypic characteristics. One strain, designated LMG 26641, belonged to Carnobacterium alterfunditum and the other strain, designated LMG 26642T, could be assigned to a novel species, with Carnobacterium funditum DSM 5970T as its closest phylogenetic neighbour (99.2 % 16S rRNA gene sequence similarity). Carnobacterium iners sp. nov. could be distinguished biochemically from other members of the genus Carnobacterium by the lack of acid production from carbohydrates. DNA–DNA relatedness confirmed that strain LMG 26642T represented a novel species, for which we propose the name Carnobacterium iners sp. nov. (type strain is LMG 26642T  = CCUG 62000T).


Author(s):  
Ji Young Jung ◽  
Hye Kyeong Kang ◽  
Hyun Mi Jin ◽  
Sang-Soo Han ◽  
Young Chul Kwon ◽  
...  

A Gram-positive, facultative anaerobic, catalase-negative, non-motile, non-spore-forming and rod-shaped lactic acid bacterium strain, denoted as NFFJ11T and isolated from total mixed fermentation feed in the Republic of Korea, was characterized through polyphasic approaches, including sequence analyses of the 16S rRNA gene and housekeeping genes (rpoA and pheS), determination of average nucleotide identity and in silico DNA–DNA hybridization, fatty acid methyl ester analysis, and phenotypic characterization. Phylogenetic analyses based on 16S rRNA, rpoA and pheS gene sequences revealed that strain NFFJ11T belonged to the genus Companilactobacillus . The 16S rRNA gene sequence of strain NFFJ11T exhibited high similarity to Companilactobacillus formosensis S215T (99.66 %), Companilactobacillus farciminis Rv4 naT (99.53 %), Companilactobacillus crustorum LMG 23699T (99.19 %), Companilactobacillus futsaii YM 0097T (99.06 %), Companilactobacillus zhachilii HBUAS52074T (98.86 %) and Companilactobacillus heilongiiangensis S4-3T (98.66 %). However, average nucleotide identity and in silico DNA–DNA hybridization values for these type strains were in the range of 79.90–92.93 % and 23.80–49.30 %, respectively, which offer evidence that strain NFFJ11T belongs to a novel species of the genus Companilactobacillus . The cell-wall peptidoglycan type was A4α (l-Lys–d-Asp) and the G+C content of the genomic DNA was 35.7 mol%. The main fatty acids of strain NFFJ11T were C18 : 1  ω9c (43.3 %), C16 : 0 (20.1 %) and summed feature 7 (18.3 %; comprising any combination of C19 : 1  ω7c, C19 : 1  ω6c and C19 : 0 cyclo ω10c). Through polyphasic taxonomic analysis, it was observed that strain NFFJ11T represents a novel species belonging to the genus Companilactobacillus , for which the name Companilactobacillus pabuli sp. nov. is proposed. The type strain is NFFJ11T (= KACC 21771T= JCM 34088T).


2019 ◽  
Vol 8 (29) ◽  
Author(s):  
Takeshi Yamada ◽  
Masako Hamada ◽  
Misaki Kurobe ◽  
Jun Harada ◽  
Surya Giri ◽  
...  

Little information on poly(l-lactic acid) (PLLA) treatment-associated microbiota in thermophilic anaerobic digestion reactors is available. Here, we provide 16S rRNA gene sequence data on microbiota in a thermophilic anaerobic digestion reactor converting PLLA to methane for 336 days. Data comprising 99,566 total high-quality reads were tabulated at the taxonomic class level.


2020 ◽  
Vol 8 (10) ◽  
pp. 1581
Author(s):  
Minseok Kim ◽  
Tansol Park ◽  
Jung Im Yun ◽  
Hye Won Lim ◽  
Na Rae Han ◽  
...  

The microbiota of human skin is influenced by host and environmental factors. To determine if chronological age influences the composition of the skin microbiota on the forehead and hands, 73 Korean women were sorted into one of three age groups: (1) 10–29 years (n = 24), (2) 30–49 years (n = 21), and (3) 50–79 years (n = 28). From the 73 women, 146 skin samples (two skin sites per person) were collected. 16S rRNA gene amplicon sequencing was then conducted to analyze the skin microbiota. The overall microbial distribution varied on the forehead but was similar on the hands across the three age groups. In addition, the composition of the skin microbiota differed between the forehead and hands. Commensal microbiota, such as Streptococcus, Staphylococcus, Cutibacterium, and Corynebacterium, which contribute to maintaining skin health via dominant occupation, were affected by increasing age on forehead and hand skin. Alpha diversity indices increased significantly with age on forehead skin. This study indicates that older people may be more susceptible to pathogenic invasions due to an imbalanced skin microbiota resulting from age-related changes. The results of our study may help develop new strategies to rebalance skin microbiota shifted during aging.


2005 ◽  
Vol 55 (1) ◽  
pp. 345-351 ◽  
Author(s):  
Laurent Toffin ◽  
Klaus Zink ◽  
Chiaki Kato ◽  
Patricia Pignet ◽  
Adeline Bidault ◽  
...  

A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0–120 g l−1, with the optimum at 10–20 g l−1. The temperature range for growth at pH 7·0 was 4–50 °C, with the optimum at 37–40 °C. The optimum pH for growth was 7·0–8·0. The optimum pressure for growth was 0·1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2T (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA–DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T).


2020 ◽  
Vol 84 (1) ◽  
pp. 63-72
Author(s):  
QING ZHANG ◽  
XIAOJUAN SONG ◽  
WENLIN SUN ◽  
CHAN WANG ◽  
CUIQIN LI ◽  
...  

ABSTRACT A total of 115 isolates of lactic acid bacteria were screened from traditional fermented foods in Guizhou Province, People's Republic of China. The cholesterol removal rates of 86 isolates ranged from 7.29 to 25.66%, and 18 isolates showed a cholesterol removal rate of more than 15%. According to the results of physiological and biological tests, 13 isolates were selected to determine the fermentation performance; 9 isolates—MT-4, MT-2, PJ-15, SR2-2, SQ-4, SQ-7, ST2-2, ST2-6, and NR1-7—had high tolerance of bile salt and acid and had a survival rate of more than 96% under pH 3.0 and 0.3% bile salt. ST2-2, SR2-2, NR1-7, SQ-4, and MT-4 had high survival rate in different concentrations of NaCl and NaNO2 under different temperatures. According to BLAST comparison results of the 16S rRNA sequence in the GenBank database and the genetic distance of the 16S rRNA sequence with an ortho-connected algorithm, SR2-2, NR1-7, and ST2-2 were identified as Lactobacillus plantarum, MT-4 was identified as Lactobacillus pentosus, and SQ-4 was identified as Lactobacillus paraplantarum. Moreover, strains SQ-4 and MT-4 were added to fermented beef. Results showed that the fermented beef had delicious taste and was popular to consumers because of its proper pH, pleasant colors, high viable cell count, and suitable content of bound and immobilized water. These results provide a basis for the development of new starter formulation for the production of high-quality fermented meat products. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document