scholarly journals Methionine Sulfoxide Reductase B Regulates the Activity of Ascorbate Peroxidase of Banana Fruit

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 310
Author(s):  
Lu Xiao ◽  
Guoxiang Jiang ◽  
Huiling Yan ◽  
Hongmei Lai ◽  
Xinguo Su ◽  
...  

Ascorbate peroxidase (APX) is a key antioxidant enzyme that is involved in diverse developmental and physiological process and stress responses by scavenging H2O2 in plants. APX itself is also subjected to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of APX in plants remains poorly understood. Here, we identified and confirmed that MaAPX1 interacts with methionine sulfoxide reductase B2 (MsrB2) in bananas. Ectopic overexpression of MaAPX1 delays the detached leaf senescence induced by darkness in Arabidopsis. Sulfoxidation of MaAPX1, i.e., methionine oxidation, leads to loss of the activity, which is repaired partially by MaMsrB2. Moreover, mimicking sulfoxidation by mutating Met36 to Gln also decreases its activity in vitro and in vivo, whereas substitution of Met36 with Val36 to mimic the blocking of sulfoxidation has little effect on APX activity. Spectral analysis showed that mimicking sulfoxidation of Met36 hinders the formation of compound I, the first intermediate between APX and H2O2. Our findings demonstrate that the redox state of methionine in MaAPX1 is critical to its activity, and MaMsrB2 can regulate the redox state and activity of MaAPX1. Our results revealed a novel post-translational redox modification of APX.

2003 ◽  
Vol 69 (4) ◽  
pp. 2044-2051 ◽  
Author(s):  
Jens Walter ◽  
Nicholas C. K. Heng ◽  
Walter P. Hammes ◽  
Diane M. Loach ◽  
Gerald W. Tannock ◽  
...  

ABSTRACT Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing ′ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, ′bglM (β-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem.


2008 ◽  
Vol 190 (17) ◽  
pp. 5806-5813 ◽  
Author(s):  
Emmanuel Denou ◽  
Raymond David Pridmore ◽  
Marco Ventura ◽  
Anne-Cécile Pittet ◽  
Marie-Camille Zwahlen ◽  
...  

ABSTRACT Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE (“antitoxin”)/pemK (“toxin”) gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5′ end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.


2020 ◽  
Vol 71 (18) ◽  
pp. 5645-5655 ◽  
Author(s):  
Yujing Bai ◽  
Jingru Guo ◽  
Russel J Reiter ◽  
Yunxie Wei ◽  
Haitao Shi

Abstract Melatonin is an important indole amine hormone in animals and plants. The enzymes that catalyse melatonin synthesis positively regulate plant stress responses through modulation of the accumulation of reactive oxygen species (ROS). However, the relationship between melatonin biosynthetic enzymes and ROS-scavenging enzymes has not been characterized. In this study, we demonstrate that two enzymes of the melatonin synthesis pathway in Manihot esculenta (MeTDC2 and MeASMT2) directly interact with ascorbate peroxidase (MeAPX2) in both in vitro and in vivo experiments. Notably, in the presence of MeTDC2 and MeASMT2, MeAPX2 showed significantly higher activity and antioxidant capacity than the purified MeAPX2 protein alone. These findings indicate that MeTDC2–MeAPX2 and MeASMT2–MeAPX2 interactions both activate APX activity and increase antioxidant capacity. In addition, the combination of MeTDC2, MeASMT2, and MeAPX2 conferred improved resistance to hydrogen peroxide in Escherichia coli. Moreover, this combination also positively regulates oxidative stress tolerance in cassava. Taken together, these findings not only reveal a direct interaction between MeTDC2, MeASMT2, and MeAPX2, but also highlight the importance of this interaction in regulating redox homoeostasis and stress tolerance in cassava.


2009 ◽  
Vol 29 (8) ◽  
pp. 1989-1998 ◽  
Author(s):  
Natalia Pediconi ◽  
Francesca Guerrieri ◽  
Stefania Vossio ◽  
Tiziana Bruno ◽  
Laura Belloni ◽  
...  

ABSTRACT The NAD+-dependent histone deacetylase hSirT1 regulates cell survival and stress responses by inhibiting p53-, NF-κB-, and E2F1-dependent transcription. Here we show that the hSirT1/PCAF interaction controls the E2F1/p73 apoptotic pathway. hSirT1 represses E2F1-dependent P1p73 promoter activity in untreated cells and inhibits its activation in response to DNA damage. hSirT1, PCAF, and E2F1 are corecruited in vivo on theP1p73 promoter. hSirT1 deacetylates PCAF in vitro and modulates PCAF acetylation in vivo. In cells exposed to apoptotic DNA damage, nuclear NAD+ levels decrease and inactivate hSirT1 without altering the hSirT1 interaction with PCAF and hSirT1 binding to the P1p73 promoter. The reactivation of hSirT1 by pyruvate that increases the [NAD+]/[NADH] ratio completely abolished the DNA damage-induced activation of TAp73 expression, thus linking the modulation of chromatin-bound hSirT1 deacetylase activity by the intracellular redox state with P1p73 promoter activity. The release of PCAF from hSirT1 repression favors the assembly of transcriptionally active PCAF/E2F1 complexes onto the P1p73 promoter and p53-independent apoptosis. Our results identify hSirT1 and PCAF as potential targets to modulate tumor cell survival and chemoresistance irrespective of p53 status.


2015 ◽  
Vol 26 (3) ◽  
pp. 406-419 ◽  
Author(s):  
Praveen Kumar Allu ◽  
Adinarayana Marada ◽  
Yerranna Boggula ◽  
Srinivasu Karri ◽  
Thanuja Krishnamoorthy ◽  
...  

Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide reductases (MXR1, MXR2), deletion of mitochondrial MXR2 renders yeast cells more sensitive to oxidative stress than the cytosolic MXR1. Our earlier studies showed that Mge1, an evolutionarily conserved nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70. In the present study, we show that Mxr2 regulates Mge1 by selectively reducing MetO at position 155 and restores the activity of Mge1 both in vitro and in vivo. Mge1 M155L mutant rescues the slow-growth phenotype and aggregation of proteins of mxr2Δ strain during oxidative stress. By identifying the first mitochondrial substrate for Mxrs, we add a new paradigm to the regulation of the oxidative stress response pathway.


2004 ◽  
Vol 186 (10) ◽  
pp. 3038-3045 ◽  
Author(s):  
Margot F. Hiltz ◽  
Gary R. Sisson ◽  
Ann Karen C. Brassinga ◽  
Elizabeth Garduno ◽  
Rafael A. Garduno ◽  
...  

ABSTRACT Legionella pneumophila displays a biphasic developmental cycle in which replicating forms (RFs) differentiate postexponentially into highly infectious, cyst-like mature intracellular forms (MIFs). Using comparative protein profile analyses (MIFs versus RFs), we identified a 20-kDa protein, previously annotated as “Mip-like” protein, that was enriched in MIFs. However, this 20-kDa protein shared no similarity with Mip, a well-characterized peptidyl-prolyl isomerase of L. pneumophila, and for clarity we renamed it MagA (for “MIF-associated gene”). We monitored MagA levels across the growth cycle (in vitro and in vivo) by immunoblotting and established that MagA levels increased postexponentially in vitro (∼3-fold) and nearly 10-fold during MIF morphogenesis in HeLa cells. DNA sequence analysis of the magA locus revealed an upstream divergently transcribed gene, msrA, encoding a peptide methionine sulfoxide reductase and a shared promoter region containing direct and indirect repeat sequences as well as −10 hexamers often associated with stationary-phase regulation. While MagA has no known function, it contains a conserved CXXC motif commonly found in members of the thioredoxin reductase family and in AhpD reductases that are associated with alkylhydroperoxide reductase (AhpC), suggesting a possible role in protection from oxidative stress. MIFs from L. pneumophila strain Lp02 containing a magA deletion exhibited differences in Giménez staining, as well as an apparent increase in cytopathology to HeLa cells, but otherwise were unaltered in virulence traits. As demonstrated by this study, MagA appears to be a MIF-specific protein expressed late in intracellular growth that may serve as a useful marker of development.


1998 ◽  
Vol 180 (10) ◽  
pp. 2694-2700 ◽  
Author(s):  
Christopher S. Hayes ◽  
Berenice Illades-Aguiar ◽  
Lilliam Casillas-Martinez ◽  
Peter Setlow

ABSTRACT Methionine residues in α/β-type small, acid-soluble spore proteins (SASP) of Bacillus species were readily oxidized to methionine sulfoxide in vitro by t-butyl hydroperoxide (tBHP) or hydrogen peroxide (H2O2). These oxidized α/β-type SASP no longer bound to DNA effectively, but DNA binding protected α/β-type SASP against methionine oxidation by peroxides in vitro. Incubation of an oxidized α/β-type SASP with peptidyl methionine sulfoxide reductase (MsrA), which can reduce methionine sulfoxide residues back to methionine, restored the α/β-type SASP’s ability to bind to DNA. Both tBHP and H2O2 caused some oxidation of the two methionine residues of an α/β-type SASP (SspC) in spores ofBacillus subtilis, although one methionine which is highly conserved in α/β-type SASP was only oxidized to a small degree. However, much more methionine sulfoxide was generated by peroxide treatment of spores carrying a mutant form of SspC which has a lower affinity for DNA. MsrA activity was present in wild-type B. subtilis spores. However, msrA mutant spores were no more sensitive to H2O2 than were wild-type spores. The major mechanism operating for dealing with oxidative damage to α/β-type SASP in spores is DNA binding, which protects the protein’s methionine residues from oxidation both in vitro and in vivo. This may be important in vivo since α/β-type SASP containing oxidized methionine residues no longer bind DNA well and α/β-type SASP-DNA binding is essential for long-term spore survival.


2020 ◽  
Author(s):  
Carolina Sánchez-López ◽  
Natalia Labadie ◽  
Verónica A. Lombardo ◽  
Franco A. Biglione ◽  
Bruno Manta ◽  
...  

AbstractOxidation of protein methionines to methionine-sulfoxides (MetOx) is associated with several age-related diseases. In healthy cells, MetOx is reduced to methionine by two families of conserved methionine sulfoxide reductase enzymes, MSRA and MSRB that specifically target the S- or R-diastereoisomers of methionine-sulfoxides, respectively. To directly interrogate MSRA and MSRB functions in cellular settings, we developed an NMR-based biosensor that we call CarMetOx to simultaneously measure both enzyme activities in single reaction setups. We demonstrate the suitability of our strategy to delineate MSR functions in complex biological environments that range from native cell lysates to zebrafish embryos. Thereby, we establish differences in substrate specificities between prokaryotic and eukaryotic MSRs and introduce CarMetOx as a highly sensitive tool for studying therapeutic targets of oxidative stress-related human diseases and redox regulated signaling pathways. Our approach further extends high-resolution in-cell NMR measurements of exogenously delivered biomolecules to an entire multicellular organism.


2020 ◽  
Vol 26 (65) ◽  
pp. 14838-14843
Author(s):  
Carolina Sánchez‐López ◽  
Natalia Labadie ◽  
Verónica A. Lombardo ◽  
Franco A. Biglione ◽  
Bruno Manta ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


Sign in / Sign up

Export Citation Format

Share Document