scholarly journals Resveratrol Protects against Cerebral Ischemic Injury via Restraining Lipid Peroxidation, Transition Elements, and Toxic Metal Levels, but Enhancing Anti-Oxidant Activity

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1515
Author(s):  
Ming-Cheng Lin ◽  
Chien-Chi Liu ◽  
Yu-Chen Lin ◽  
Chin-Sheng Liao

Cerebral ischemia is related to increased oxidative stress. Resveratrol displays anti-oxidant and anti-inflammatory properties. The transition elements iron (Fe) and copper (Cu) are indispensable for the brain but overload is deleterious to brain function. Aluminum (Al) and arsenic (As) are toxic metals that seriously threaten brain health. This study was conducted to elucidate the correlation of the neuroprotective mechanism of resveratrol to protect cerebral ischemic damage with modulation of the levels of lipid peroxidation, anti-oxidants, transition elements, and toxic metals. Experimentally, 20 mg/kg of resveratrol was given once daily for 10 days. The cerebral ischemic operation was performed via occlusion of the right common carotid artery together with the right middle cerebral artery for 60 min followed by homogenization of the brain cortex and collection of supernatants for biochemical analysis. In the ligation group, levels of malondialdehyde, Fe, Cu, Al, and As increased but those of the anti-oxidants superoxide dismutase and catalase decreased. Pretreating rats with resveratrol before ischemia significantly reversed these effects. Our findings highlight the association of overload of Fe, Cu, As, and Al with the pathophysiology of cerebral ischemia. In conclusion, resveratrol protects against cerebral ischemic injury via restraining lipid peroxidation, transition elements, and toxic metals, but increasing anti-oxidant activity.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6128
Author(s):  
Ming-Cheng Lin ◽  
Chien-Chi Liu ◽  
Chin-Sheng Liao ◽  
Ju-Hai Ro

Cerebral ischemia results in increased oxidative stress in the affected brain. Accumulating evidence suggests that quercetin possesses anti-oxidant and anti-inflammatory properties. The essential elements magnesium (Mg), zinc (Zn), selenium (Se), and transition metal iron (Fe), copper (Cu), and antioxidants superoxide dismutase (SOD) and catalase (CAT) are required for brain functions. This study investigates whether the neuroprotective effects of quercetin on the ipsilateral brain cortex involve altered levels of essential trace metals, the Cu/Zn ratio, and antioxidant activity. Rats were intraperitoneally administered quercetin (20 mg/kg) once daily for 10 days before ischemic surgery. Cerebral ischemia was induced by ligation of the right middle cerebral artery and the right common carotid artery for 1 h. The ipsilateral brain cortex was homogenized and the supernatant was collected for biochemical analysis. Results show that rats pretreated with quercetin before ischemia significantly increased Mg, Zn, Se, SOD, and CAT levels, while the malondialdehyde, Fe, Cu, and the Cu/Zn ratio clearly decreased as compared to the untreated ligation subject. Taken together, our findings suggest that the mechanisms underlying the neuroprotective effects of quercetin during cerebral ischemic injury involve the modulation of essential elements, transition metals, Cu/Zn ratio, and antioxidant activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zun-Jing Liu ◽  
Wei Liu ◽  
Lei Liu ◽  
Cheng Xiao ◽  
Yu Wang ◽  
...  

Cerebral ischemia is the most common cerebrovascular disease worldwide. Recent studies have demonstrated that curcumin had beneficial effect to attenuate cerebral ischemic injury. However, it is unclear how curcumin protects against cerebral ischemic injury. In the present study, using rat middle cerebral artery occlusion model, we found that curcumin was a potent PPARγagonist in that it upregulated PPARγexpression and PPARγ-PPRE binding activity. Administration of curcumin markedly decreased the infarct volume, improved neurological deficits, and reduced neuronal damage of rats. In addition, curcumin suppressed neuroinflammatory response by decreasing inflammatory mediators, such as IL-1β, TNF-α, PGE2, NO, COX-2, and iNOS induced by cerebral ischemia of rats. Furthermore, curcumin suppressed IκB degradation that was caused by cerebral ischemia. The present data also showed that PPARγinteracted with NF-κB-p65 and thus inhibited NF-κB activation. All the above protective effects of curcumin on cerebral ischemic injury were markedly attenuated by GW9662, an inhibitor of PPARγ. Our results as described above suggested that PPARγinduced by curcumin may play a critical role in protecting against brain injury through suppression of inflammatory response. It also highlights the potential of curcumin as a therapeutic agent against cerebral ischemia.


2021 ◽  
Author(s):  
Lixia Zhang ◽  
Yulong Ma ◽  
Min Liu ◽  
Miao Sun ◽  
Jin Wang ◽  
...  

Abstract Growing evidence indicates that estrogen plays a pivotal role in neuroprotection against cerebral ischemia, but the molecular mechanism of this protection is still elusive. N-myc downstream‐regulated gene 2 (Ndrg2), an estrogen-targeted gene, has been shown to exert neuroprotective effects against cerebral ischemia in male mice. However, the role of Ndrg2 in the neuroprotective effect of estrogen remains unknown. In this study, we first detected NDRG2 expression levels in the cortex and striatum in both female and male mice with western blot analyses. We then detected cerebral ischemic injury by constructing middle cerebral artery occlusion and reperfusion (MCAO-R) models in Ndrg2 knockout or conditional knockdown female mice. We further implemented estrogen, ERα or ERβ agonist replacement in the ovariectomized (OVX) Ndrg2 knockouts or conditional knockdowns female mice, then tested for NDRG2 expression, glial fibrillary acidic protein (GFAP) expression, and extent of cerebral ischemic injury. We found that NDRG2 expression was significantly higher in female than in male mice in both the cortex and striatum. Ndrg2 knockouts and conditional knockdowns showed significantly aggravated cerebral ischemic injury in female mice. Estrogen and ERβ replacement treatment (DPN) led to NDRG2 upregulation in both the cortex and striatum of OVX mice. Estrogen and DPN also led to GFAP upregulation in OVX mice. However, the effect of estrogen and DPN in activating astrocytes was lost in Ndrg2 knockouts OVX mice and primary cultured astrocytes, but partially retained in conditional knockdowns OVX mice. Most importantly, we found that the neuroprotective effects of E2 and DPN against cerebral ischemic injury were lost in Ndrg2 knockouts OVX mice but partially retained in conditional knockdowns OVX mice. These findings demonstrate that estrogen alleviated cerebral ischemic injury via ERβ upregulation of Ndrg2, which could activate astrocytes, indicating that Ndrg2 is a critical mediator of E2-induced neuroprotection against cerebral ischemic injury.


2013 ◽  
Vol 152 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Kwang-Ming Fang ◽  
Fu-Chou Cheng ◽  
Yeou-Lih Huang ◽  
Shu-Ying Chung ◽  
Zhong-Yang Jian ◽  
...  

2016 ◽  
Vol 40 (3-4) ◽  
pp. 693-706 ◽  
Author(s):  
Bao Xin ◽  
Chun-Long Liu ◽  
Hong Yang ◽  
Cheng Peng ◽  
Xiao-Hui Dong ◽  
...  

Background/Aims: Prolonged fasting (PF) was shown to be of great potency to promote optimal health and reduce the risk of many chronic diseases. This study sought to determine the effect of PF on the endothelial progenitor cell (EPC)-mediated angiogenesis in the ischemic brain and cerebral ischemic injury in mice. Methods: Mice were subjected to PF or periodic PF after cerebral ischemia, and histological analysis and behavioral tests were performed. Mouse EPCs were isolated and examined, and the effects of EPC transplantation on cerebral ischemic injury were investigated in mice. Results: It was found that PF significantly increased the EPC functions and angiogenesis in the ischemic brain, and attenuated the cerebral ischemic injury in mice that was previously subjected to cerebral ischemia. Periodic PF might reduce cortical atrophy and improve long-term neurobehavioral outcomes after cerebral ischemia in mice. The eNOS and MnSOD expression and intracellular NO level were increased, and TSP-2 expression and intracellular O2- level were reduced in EPCs from PF-treated mice compared to control. In addition, transplanted EPCs might home into ischemic brain, and the EPCs from PF-treated mice had a stronger ability to promote angiogenesis in ischemic brain and reduce cerebral ischemic injury compared to the EPCs from control mice. The EPC-conditioned media from PF-treated mice exerted a stronger effect on cerebral ischemic injury reduction compared to that from control mice. Conclusion: Prolonged fasting promoted EPC-mediated ischemic angiogenesis and improved long-term stroke outcomes in mice. It is implied that prolonged fasting might potentially be an option to treat ischemic vascular diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongwei Lu ◽  
Yaqin Meng ◽  
Xinrui Han ◽  
Wei Zhang

Stroke is the leading cause of death and disability in humans. Strokes are classified as either ischemic or hemorrhagic. Ischemic stroke accounts for 70–80% of the cases. Inflammation is a key factor in ischemic brain injury. Studies have shown that inflammatory response induced by NLRP3 inflammasome is one of the root causes of brain damage in mice with cerebral ischemia. However, its specific mechanism in cerebral ischemia is still unclear. ADAM8 (a disintegrin and metalloproteases 8) is a transmembrane protein with different functions. It plays an important role in tumors and neuroinflammation-related diseases. However, the role and molecular mechanism of ADAM8 in cerebral ischemia injury are still unclear. This study aims to evaluate the role of ADAM8 in cerebral ischemic injury and explore its signal transduction mechanism. This experiment shows that ADAM8 can significantly cause neurological deficits in MCAO mice and can substantially cause ipsilateral cerebral edema and cerebral infarction in MCAO mice. In addition, ADAM8 can significantly induce cortical cell apoptosis in MCAO mice, leading to the loss of neurons and the expression of proinflammatory factors COX2, iNOS, TNFα, and IL-6. Importantly, we confirmed that ADAM8 mediates the inflammatory response by promoting the activation of NLRP3 inflammasome, microglia, and astrocytes. These results indicate that ADAM8 may be a candidate drug target for the prevention and treatment of the cerebral ischemic injury.


2013 ◽  
Vol 9 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Naohisa Hosomi ◽  
Akira Nishiyama ◽  
Masayasu Matsumoto

2021 ◽  
Vol 13 ◽  
Author(s):  
Yingjia Guo ◽  
Junpeng Zhou ◽  
Xianglong Li ◽  
Ying Xiao ◽  
Jingyao Zhang ◽  
...  

Elderly patients suffer more brain damage in comparison with young patients from the same ischemic stroke. The present study was undertaken to test the hypothesis that suppressed hypoxia-inducible factor-1 (HIF-1) transcription activity is responsible for defective recovery after ischemic stroke in the elders. Aged and young rats underwent 1-h transient middle cerebral artery occlusion (MCAO) to produce cerebral ischemic injury. The initial cerebral infarct volume in the young gradually declined as time elapsed, but in the aged rats remained the same. The defective recovery in the aged was associated with depressed angiogenesis and retarded neurorestoration. There was no difference in HIF-1α accumulation in the brain between the two age groups, but the expression of HIF-1 regulated genes involved in cerebral recovery was suppressed in the aged. In confirmation, inhibition of HIF-1 transactivation of gene expression in the young suppressed cerebral recovery from MCAO as the same as that observed in the aged rats. Furthermore, a copper metabolism MURR domain 1 (COMMD1) was significantly elevated after MCAO only in the brain of aged rats, and suppression of COMMD1 by siRNA targeting COMMD1 restored HIF-1 transactivation and improved recovery from MCAO-induced damage in the aged brain. These results demonstrate that impaired HIF-1 transcription activity, due at least partially to overexpression of COMMD1, is associated with the defective cerebral recovery from ischemic stroke in the aged rats.


Sign in / Sign up

Export Citation Format

Share Document