scholarly journals Key Developments in the Potential of Curcumin for the Treatment of Peripheral Neuropathies

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 950
Author(s):  
Martial Caillaud ◽  
Yu Aung Myo ◽  
Bryan McKiver ◽  
Urszula Osinska Warncke ◽  
Danielle Thompson ◽  
...  

Peripheral neuropathies (PN) can be triggered after metabolic diseases, traumatic peripheral nerve injury, genetic mutations, toxic substances, and/or inflammation. PN is a major clinical problem, affecting many patients and with few effective therapeutics. Recently, interest in natural dietary compounds, such as polyphenols, in human health has led to a great deal of research, especially in PN. Curcumin is a polyphenol extracted from the root of Curcuma longa. This molecule has long been used in Asian medicine for its anti-inflammatory, antibacterial, and antioxidant properties. However, like numerous polyphenols, curcumin has a very low bioavailability and a very fast metabolism. This review addresses multiple aspects of curcumin in PN, including bioavailability issues, new formulations, observations in animal behavioral tests, electrophysiological, histological, and molecular aspects, and clinical trials published to date. The, review covers in vitro and in vivo studies, with a special focus on the molecular mechanisms of curcumin (anti-inflammatory, antioxidant, anti-endoplasmic reticulum stress (anti-ER-stress), neuroprotection, and glial protection). This review provides for the first time an overview of curcumin in the treatment of PN. Finally, because PN are associated with numerous pathologies (e.g., cancers, diabetes, addiction, inflammatory disease...), this review is likely to interest a large audience.

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 48
Author(s):  
Laura Micheli ◽  
Marzia Vasarri ◽  
Emanuela Barletta ◽  
Elena Lucarini ◽  
Carla Ghelardini ◽  
...  

Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1β and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10–100 mg kg−1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1β. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1β levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1059
Author(s):  
Marianna Pauletto ◽  
Mery Giantin ◽  
Roberta Tolosi ◽  
Irene Bassan ◽  
Andrea Barbarossa ◽  
...  

Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.


2020 ◽  
Vol 20 (11) ◽  
pp. 988-1000 ◽  
Author(s):  
Bellamkonda Bosebabu ◽  
Sri Pragnya Cheruku ◽  
Mallikarjuna Rao Chamallamudi ◽  
Madhavan Nampoothiri ◽  
Rekha R. Shenoy ◽  
...  

Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are emerging describing the pleiotropic biological effects of sesamol. This review summarized the most interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders. Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status, protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades. In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant, anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective, anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic, wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition, hepatoprotective activity and other biological effects. Here we have summarized the proposed mechanism behind these pharmacological effects.


Author(s):  
Saloomeh Fouladi ◽  
Mohsen Masjedi ◽  
Mazdak Ganjalikhani Hakemi ◽  
Nahid Eskandari

Allergic asthma is the most common type of allergy which have become increasingly prevalent in all around the world. Airway eosinophilic inflammation is a major feature of allergic asthma. Glycyrrhiza uralensis (licorice) is one of the regular herbs in traditional Chinese medicine (TCM) as it has many effects on the immune system such as anti-inflammatory and immune regulatory activity; antiviral and antitumor effects. This review focuses on the "licorice” components, mainly glycyrrhizic acid (GA) and derivatives structure that evaluate its effects on the allergic asthma. We performed searching articles in Pubmed, Web of Science, and Scopus data bank from 1990 to 2017. The search syntax were: "glycyrrhizin" OR " glycyrrhizic acid" OR " glycyrrhizinic acid" OR" glycyrrhiza glabra" OR " liquorice root" OR "G. glabra" OR "glycyrrhizic Acid" AND "allergic asthma" OR "bronchial asthma" OR "asthma, bronchial" OR "airway hyper-responsiveness" OR "airway inflammation".   Several molecular mechanisms and inflammatory mediators may possibly be responsible for efficacy of glycyrrhizin. Some in vitro studies indicated to the fact that possible mechanisms of anti-inflammatory effects could be through reduction of pro-inflammatory mediator's synthesis that motivates eosinophil, basophils and mast cells to release cytokines for the differentiation of T helper cells into Th2 cells to secrete interleukins. Furthermore, some transcription factors such as NF-κB, STAT6 and HDAC2 go between modulations of anti-asthmatic effects. The last but not the least it can be said that glycyrrhizin is potentially a good herbal drug with the lower most adverse effects for asthma treatment.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Thea Magrone ◽  
Manrico Magrone ◽  
Matteo Antonio Russo ◽  
Emilio Jirillo

In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be illustrated with special reference to the activation of T regulatory cells which support a tolerogenic pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood–brain barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability, activity of metabolites, and interaction with microbiota, deserve deeper studies.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 332
Author(s):  
Myoung-Sook Shin ◽  
Jaemin Lee ◽  
Jin Woo Lee ◽  
Se Hoon Park ◽  
Il Kyun Lee ◽  
...  

Artemisia argyi is widely used as traditional medicine in East Asia. However, its effects against inflammation and gastric ulcers have not been reported yet. We analyzed anti-inflammatory activity and its molecular mechanisms of A. argyi using RAW264.7 cells line, then evaluated the curative efficacy in rats with acute gastric ulcers. Nitric oxide and IL-6 production was measured using Griess reagent and an ELISA kit. Inducible nitric oxide synthase (iNOS), interleukin (IL)-6, and mucin (MUC)1, MUC5AC, and MUC6 mRNA were determined by SYBR Green or Taqman qRT-PCR methods. The phosphorylation of ERK, JNK, p38, and c-Jun protein were detected by western blotting. RW0117 inhibited LPS-induced NO and IL-6 production. The mRNA levels of iNOS and IL-6 were strongly suppressed. The phosphorylation of ERK, JNK, and c-Jun decreased by treatment with RW0117. Oral administration of RW0117 recovered the amount of mucin mRNA and protein level that was decreased due to gastric ulcers by HCl-EtOH. A. argyi exhibited strong anti-inflammatory effects and contributed to the modulation of HCl-EtOH-induced gastric ulcer in rats.


2013 ◽  
Vol 1 (2) ◽  
Author(s):  
Marco Antonio De Paz Campos

Curcumin is a polyphenol derived from the herbal remedy and dietary spice turmeric (Curcuma longa) used by men in the exage as medicinal remedy and spice. In the last decades the curcumin has been an object of multiple studies in vitro and in vivo that have established the scientific bases of their numerous therapeutic activities, emphasizing their powerful anti-inflammatory, anti-cancer and antioxidant properties. In the present work a revision of the anti-inflammatory mechanisms of action is made that include the inhibition of several cell signalling pathways at multiple levels and downregulates cellular enzyme like cyclooxygenase, lipoxygenase and nitric oxide synthase. Also the preclinical and clinical studies that have been carried out in this aspect are mentioned, the support, safety and efficiency of the curcumin used with analgesic and antiinflammatory purposes.


2006 ◽  
Vol 1 (6) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
Badreldin H. Ali ◽  
Husnia Marrif ◽  
Salwa A. Noureldayem ◽  
Amel O. Bakheit ◽  
Gerald Blunden

Curcumin (diferuloyl methane), a small-molecular weight compound isolated from the roots of Curcuma longa L. (family Zingiberaceae), has been used traditionally for centuries in Asia for medicinal, culinary and other purposes. A large number of in vitro and in vivo studies in both animals and man have indicated that curcumin has strong antioxidant, anti-carcinogenic, anti-inflammatory, anti-angiogenic, antispasmodic, antimicrobial, anti-parasitic and other activities. The mechanisms of some of these actions have recently been intensively investigated. Curcumin inhibits the promotion/ progression stage of carcinogenesis by induction of apoptosis and the arrest of cancer cells in the S, G2/M cell cycle phase. The compound inhibits the activity of growth factor receptors. The anti-inflammatory properties of curcumin are mediated through their effects on cytokines, lipid mediators, eicosanoids and proteolytic enzymes. Curcumin scavenges the superoxide radical, hydrogen peroxide and nitric oxide, and inhibits lipid peroxidation. These actions may be the basis for many of its pharmacological and therapeutic properties. Curcumin is a nutraceutical of low toxicity, which has been used successfully in a number of medical conditions that include cataracts, cystic fibrosis, and prostate and colon cancers.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Kah Heng Yap ◽  
Vikram Rao ◽  
Hira Choudhury

Catalpol, an iridoid glucoside, is widely distributed in many plant families and is primarily obtained from the root of Rehmannia glutinosa Libosch. Rehmannia glutinosa is a plant very commonly used in Chinese and Korean traditional medicine for various disorders, including diabetes mellitus, neuronal disorders, and inflammation. Catalpol has been studied extensively for its biological properties both in vitro and in vivo. This review aims to appraise the biological effects of catalpol and their underlying mechanisms. An extensive literature search was conducted using the keyword “Catalpol” in the public domains of Google scholar, PubMed, and Scifinder. Catalpol exhibits anti-diabetic, cardiovascular protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and anti-oxidant effects in experimental studies. Anti-inflammatory and antioxidant properties are mostly related for its biological effect. However, some specific mechanisms are also elucidated. Elevated serotonin and BDNF level by catalpol significantly protect against depression and neurodegeneration. Catalpol demonstrated an increased mitochondrial biogenesis and activation of PI3K/Akt pathway for insulin sensitizing effect. Further, its cardiovascular protective effect was linked to PI3K/Akt, apelin/APJ and Jak-Stat pathway. Catalpol produced a significant reduction in cell proliferation and an increase in apoptosis in different cancer conditions. Overall, catalpol demonstrated multiple biological effects due to its numerous mechanisms including anti-inflammatory and antioxidant effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Francesca Oppedisano ◽  
Rosa Maria Bulotta ◽  
Jessica Maiuolo ◽  
Micaela Gliozzi ◽  
Vincenzo Musolino ◽  
...  

Osteoarthritis (OA) is a disease caused by joint degeneration with massive cartilage loss, and obesity is among the risk factors for its onset, though the pathophysiological mechanisms underlying the disease and better therapeutic approach still remain to be assessed. In recent years, several nutraceutical interventions have been investigated in order to define better solutions for preventing and treating OA. Among them, polyunsaturated fatty acids (n-3 PUFAs) appear to represent potential candidates in counteracting OA and its consequences, due to their anti-inflammatory, antioxidant, and chondroinductive effects. PUFAs have been found to counteract the onset and progression of OA by reducing bone and cartilage destruction, inhibiting proinflammatory cytokine release, reactive oxygen species (ROS) generation, and the NF-κB pathway’s activation. Moreover, a diet rich in n-3 PUFAs and their derivatives (maresins and resolvins) demonstrates beneficial effects on associated pain reduction. Finally, it has been shown that together with the anti-inflammatory and antioxidant properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, their antiapoptotic and antiangiogenic effects contribute in reducing OA development. The present review is aimed at assessing evidence suggesting the potential benefit of nutraceutical supplementation with PUFAs in OA management according to their efficacy in targeting relevant pathophysiological mechanisms responsible for inflammation and joint destruction processes, and this may represent a novel and potentially useful approach in OA prevention and treatment. For that purpose, a PubMed literature survey was conducted with a focus on some in vitro and in vivo studies and clinical trials from 2015 to 2020.


Sign in / Sign up

Export Citation Format

Share Document