scholarly journals On the Use of Neuro-Swarm System to Forecast the Pile Settlement

2020 ◽  
Vol 10 (6) ◽  
pp. 1904 ◽  
Author(s):  
Danial Jahed Armaghani ◽  
Panagiotis G. Asteris ◽  
Seyed Alireza Fatemi ◽  
Mahdi Hasanipanah ◽  
Reza Tarinejad ◽  
...  

In civil engineering applications, piles (deep foundations) are pushed into the ground in order to perform as steady support of structures. As these type of foundations are able to carry a huge amount of load, they should be carefully designed in terms of their settlement. Therefore, the control and estimation of settlement is a significant issue in pilling design and construction. The objective of the present study is to introduce a modeling process of a hybrid intelligence system namely neural network optimized by particle swarm optimization (neuro-swarm) for estimation of pile settlement. To do that, properties results of several piles socketed into rock mass together with their settlements were considered as established databased to propose neuro-swarm model. Then, several sensitivity analyses were carried out to determine the most influential particle swarm optimization parameters for pile settlement prediction. Eventually, five neuro-swarm models were constructed to understand the behavior of this hybrid model on them in pile settlement prediction. As a result, according to results of five performance indices, dataset number 4 showed the highest prediction capacity among all five datasets. The coefficient of determination (R2) and system error values of (0.851 and 0.079) and (0.892 and 0.099) were obtained respectively for train and test stages of the best neuro-swarm model which reveal the capability level of this hybrid model in predicting pile settlement. The modeling process introduced in this study can be useful for the researchers who are interested to work on the same hybrid technique.

2019 ◽  
Vol 11 (11) ◽  
pp. 3096 ◽  
Author(s):  
Xinghan Xu ◽  
Weijie Ren

With the acceleration of urbanization, there is an increasing trend of heavy pollution. PM2.5, also known as fine particulate matter, refers to particles in the atmosphere with a diameter of less than or equal to 2.5 microns. PM2.5 has a serious impact on human life, a sustainable city, national economic development, and so on. How to forecast the PM2.5 concentration accurately, and then formulate a scientific air pollution prevention and monitoring program is of great significance. This paper proposes a hybrid model based on echo state network (ESN) and an improved particle swarm optimization (IPSO) algorithm for the Beijing air pollution problem, and provides a method for PM2.5 concentration forecasting. Firstly, the PSO algorithm is improved to speed up the search performance. Secondly, the optimal subset of the original data is selected by the convergence cross-mapping (CCM) method. Thirdly, the phase space reconstruction (PSR) process is combined with the forecasting model, and some parameters are optimized by the IPSO. Finally, the optimal variable subset is used to predict PM2.5 concentration. The 11-dimensional air quality data in Beijing from January 1 to December 31, 2016 are analyzed by the proposed method. The experimental results show that the hybrid method is superior to other comparative models in several evaluation indicators, both in one-step and multi-step forecasting of PM2.5 time series. The hybrid model has good application prospects in air quality forecasting and monitoring.


2012 ◽  
Vol 498 ◽  
pp. 115-125 ◽  
Author(s):  
H. Hachimi ◽  
Rachid Ellaia ◽  
A. El Hami

In this paper, we present a new hybrid algorithm which is a combination of a hybrid genetic algorithm and particle swarm optimization. We focus in this research on a hybrid method combining two heuristic optimization techniques, genetic algorithms (GA) and particle swarm optimization (PSO) for the global optimization. Denoted asGA-PSO, this hybrid technique incorporates concepts fromGAandPSOand creates individuals in a new generation not only by crossover and mutation operations as found inGAbut also by mechanisms ofPSO. The performance of the two algorithms has been evaluated using several experiments.


2019 ◽  
Vol 9 (16) ◽  
pp. 3221 ◽  
Author(s):  
Mosbeh R. Kaloop ◽  
Deepak Kumar ◽  
Pijush Samui ◽  
Alaa R. Gabr ◽  
Jong Wan Hu ◽  
...  

Stabilized base/subbase materials provide more structural support and durability to both flexible and rigid pavements than conventional base/subbase materials. For the design of stabilized base/subbase layers in flexible pavements, good performance in terms of resilient modulus (Mr) under wet-dry cycle conditions is required. This study focuses on the development of a Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) to predict the performance of stabilized aggregate bases subjected to wet-dry cycles. Furthermore, the performance of the developed PSO-ELM model was compared with the Particle Swarm Optimization-based Artificial Neural Network (PSO-ANN) and Kernel ELM (KELM). The results showed that the PSO-ELM model significantly yielded higher prediction accuracy in terms of the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of determination (r2) compared with the other two investigated models, PSO-ANN and KELM. The PSO-ELM was unique in that the predicted Mr values generally yielded the same distribution and trend as the observed Mr data.


Sign in / Sign up

Export Citation Format

Share Document