scholarly journals Design of Railway Track Model with Three-Dimensional Alignment Based on Extended Industry Foundation Classes

2020 ◽  
Vol 10 (10) ◽  
pp. 3649
Author(s):  
Tae Ho Kwon ◽  
Sang I. Park ◽  
Young-Hoon Jang ◽  
Sang-Ho Lee

Building information modeling (BIM) has been widely applied in conjunction with the industry foundation class (IFC) for buildings and infrastructure such as railways. However, a limitation of the BIM technology presents limitations that make designing the three-dimensional (3D) alignment-based information models difficult. Thus, the time and effort required to create a railway track model are increased, while the reliability of the model is reduced. In this study, we propose a methodology for developing an alignment-based independent railway track model and extended IFC models containing railway alignment information. The developed algorithm using BIM software tools allows for a discontinuous structure to be designed. The 3D alignment information connects different BIM software tools, and the classification system and IFC schema for expressing railway tracks are extended. Moreover, the classification system is fundamental for assigning IFC entities to railway components. Spatial and hierarchical entities were created through a developed user interface. The proposed methodology was implemented in an actual railway track test. The possibility of managing IFC-based railway track information, including its 3D alignment information, was confirmed. The proposed methodology can reduce the modeling time and can be extended to other alignment-based structures, such as roads.

2021 ◽  
Vol 10 (6) ◽  
pp. 362
Author(s):  
Junxiang Zhu ◽  
Peng Wu

Previous geo-referencing approaches for building information modeling (BIM) models can be problematic due to: (a) the different interpretations of the term ‘geo-referencing’, (b) the insufficient consideration of the placement hierarchy of the industry foundation classes (IFCs), and (c) the misunderstanding that a common way to embed spatial reference information for IFC is absent. Therefore, the objective of this study is to (1) clarify the meaning of geo-referencing in the context of BIM/GIS data integration, and (2) develop a common geo-referencing approach for IFC. To achieve the goal, a systematic and thorough investigation into the IFC standard was conducted to assess the geo-referencing capability of IFC. Based on the investigation, a geo-referencing approach was established using IFC entities that are common in different IFC versions, which makes the proposed approach common to IFC. Such a geo-referencing approach supports automatic geo-referencing that would facilitate the use of BIM models in GIS, e.g., for the construction of digital twins.


Author(s):  
Fabrizio Banfi ◽  
Daniela Oreni

The latest developments in the field of generative modeling and building information modeling for heritage building (HBIM) have allowed the authors to increase the level of transmissibility of information through the most modern techniques of virtual and augmented reality (VR-AR). This chapter summarises the last years of applied research in the field of three-dimensional modeling oriented to digitise and correctly represent the built heritage thanks to the integration of the most modern three-dimensional survey techniques with a scan-to-BIM process based on new grades of generation (GOG) and accuracy (GOA). The new paradigm of the complexity of the built heritage, its tangible and intangible values, have been shared through new immersive ways able to increase the information contents and the knowledge accumulated in the last years of one of the most representative and unique buildings of the Lombard architecture: the Cà Granda in Milan.


2020 ◽  
Vol 10 (24) ◽  
pp. 9029
Author(s):  
Bokyeong Lee ◽  
Hyeonggil Choi ◽  
Byongwang Min ◽  
Dong-Eun Lee

In this study, by applying the developed formwork automation design software to three target structures, we reviewed the applicability of the formwork automation design software for the aluminum formwork. To apply the formwork automation design software, we built an aluminum formwork library based on the conversion of two-dimensional (2D) computer-aided design (CAD) data to three-dimensional building information modeling data for all the components of the aluminum formwork. The results of the automated formwork layout on the target structures using the formwork automation design software confirmed that the wall and deck members were laid out by the set algorithm according to the formwork size and direction. However, because of the limited functionality of the software, the level of completion of the formwork layout was found to be lower than that of the manual formwork layout based on 2D CAD data. The currently developed software is based on a simple algorithm, but has a drawback in that the automated layout is limited to only some of its members. Therefore, additional research should be conducted on the development of advanced software through the diversification of the algorithm, automation of preprocessing of the mesh, and analysis of the relationships of all the members comprising the formwork.


2015 ◽  
Vol 1 (1) ◽  
pp. 26-31
Author(s):  
Zdenka Hulínová ◽  
Jana Madová

Civil engineering is considered to be the area with the highest occurrence of occupational injuries. Workers perform plenty of activities that endanger their health and put them at risk of occupational injuries and diseases. There are many convincing proves that dangerous risk situations appear already in the early stages of project proposals. On the basis of this fact we can estimate that one of the most effective methods of preventing and reducing occupational injuries is elimination of potential risk at the very beginning, i.e. already in the architectural design. Information models BIM enable us to simulate the overall situation of the project both structurally and visually. Thanks to this fact we can prevent multiple problems occurring not only during the realisation phase, but during the usage of buildings as well.


2022 ◽  
Vol 27 ◽  
pp. 48-69
Author(s):  
Sahar Y. Ghanem

As the industry transitions towards incorporating BIM in construction projects, adequately qualified students and specialists are essential to this transition. It became apparent that construction management programs required integrating Building Information Modeling (BIM) into the curriculum. By bringing Virtual Reality (VR) technology to BIM, VR-BIM would transform the architectural, engineering, and construction (AEC) industry, and three-dimensional (3D) immersive learning can be a valuable platform to enhance students' ability to recognize a variety of building principles. The study carries out a methodology for implementing the VR-BIM in the construction management undergraduate program. Based on the previous literature review, in-depth analysis of the program, and accreditation requirements, VR-BIM will be implemented throughout the curriculum by combining stand-alone class and integration in the existing courses method. The challenges that may face the program planning to implement VR-BIM are discussed, and few solutions are proposed. The lab classroom layout appropriate for the applications is designed to be adjusted for several layouts to accommodate all learning styles and objectives. A comparison between different Head-Mounted Display (HMD) headsets is carried out to choose the appropriate equipment for the lab.


2014 ◽  
Vol 608-609 ◽  
pp. 698-702 ◽  
Author(s):  
Qian Kun Wang ◽  
Peng Li ◽  
Ya Ping Xiao ◽  
Zhi Gang Liu

With application and popularization of information modeling technology, both Geographic Information Systems (GIS) and Building Information Modeling (BIM) could represent three dimensional models in different fields. By introducing application features of GIS and BIM in Metro construction, this paper presents such a thought that effective combination of GIS and BIM may play a role at different stages in metro construction.


Author(s):  
Abdalrahman T. Y. Alashi ◽  
Turgay Kerem Koramaz

In the past two decades, building information modeling (BIM) has been widely adopted by architectural, engineering, and construction firms. Its technology is based on the integration and coordination of different disciplines and professions. It involves creating three-dimensional models containing data that can be organized and manipulated to serve design, construction, and operational phases. This raises the debate over how the existence of a platform that enables urban planners and decision makers of different disciplines is so crucial. Several research studies have recently been done to integrate BIM with geographic information systems (GIS) for numerous purposes, as illustrated by several case studies. This chapter comparatively analyzes different cases, given general acknowledgment of each. Problems and potentials of the existence of such integration will be defined, in order to estimate the need for such a platform. Finally, a model of integration between different disciplines was illustrated as a motivation for further studies in the future concerning this topic.


Bauingenieur ◽  
2021 ◽  
Vol 96 (05) ◽  
pp. 182-190
Author(s):  
Janna Walter ◽  
Tim Obermeier ◽  
Joaquín Díaz

Building Information Modeling (BIM) und das offene Datenaustauschformat Industry Foundation Classes (IFC) sollen zukünftig für das Genehmigungsverfahren genutzt werden. Der Brandschutznachweis als Teil des Bauantrags wird bislang noch nicht vollständig in BIM integriert. Neben der unzureichenden Kommunikation und der zu späten Involvierung der Fachdomäne liegen die Gründe unter anderem in der nicht bestehenden Standardisierung und der damit einhergehenden fehlenden Digitalisierung von Prozessen und Informationen der Brandschutzplanung in der BIM-Methodik. Für die Einbindung der Fachdomäne in den BIM-Prozess muss es ein digitales Fachmodell geben, das alle erforderlichen Informationen erfasst. Diese müssen dazu in der IFC-Schnittstelle standardisiert und strukturiert werden, um anschließend einen Austausch zu gewährleisten. Dieser Beitrag zeigt die Möglichkeiten auf, die Brandschutzplanung in das Bauwerksmodell einzubinden. Er fasst die Vorteile und Herausforderungen einer Standardisierung zusammen und stellt ein neu entwickeltes Property Set für die Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten vor, das in Zukunft zur Auswertung und Prüfung genutzt werden kann.


Sign in / Sign up

Export Citation Format

Share Document